Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096105851> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3096105851 endingPage "7541" @default.
- W3096105851 startingPage "7541" @default.
- W3096105851 abstract "Social media is a popular platform for information sharing. Any piece of information can be spread rapidly across the globe at lightning speed. The biggest challenge for social media platforms like Twitter is how to trust news shared on them when there is no systematic news verification process, which is the case for traditional media. Detecting false information, for example, detection of rumors is a non-trivial task, given the fast-paced social media environment. In this work, we proposed an ensemble model, which performs majority-voting scheme on a collection of predictions of neural networks using time-series vector representation of Twitter data for fast detection of rumors. Experimental results show that proposed neural network models outperformed classical machine learning models in terms of micro F1 score. When compared to our previous works the improvements are 12.5% and 7.9%, respectively." @default.
- W3096105851 created "2020-11-09" @default.
- W3096105851 creator A5006284276 @default.
- W3096105851 creator A5063550459 @default.
- W3096105851 creator A5085031765 @default.
- W3096105851 date "2020-10-26" @default.
- W3096105851 modified "2023-09-30" @default.
- W3096105851 title "Ensemble Deep Learning on Time-Series Representation of Tweets for Rumor Detection in Social Media" @default.
- W3096105851 cites W1961987884 @default.
- W3096105851 cites W1988790447 @default.
- W3096105851 cites W2064675550 @default.
- W3096105851 cites W2068963126 @default.
- W3096105851 cites W2131774270 @default.
- W3096105851 cites W2140285303 @default.
- W3096105851 cites W2293652414 @default.
- W3096105851 cites W2742330194 @default.
- W3096105851 cites W2769636162 @default.
- W3096105851 cites W2805340316 @default.
- W3096105851 cites W28412257 @default.
- W3096105851 cites W2911964244 @default.
- W3096105851 cites W2913351023 @default.
- W3096105851 cites W2945989246 @default.
- W3096105851 cites W2962476566 @default.
- W3096105851 cites W2968122397 @default.
- W3096105851 cites W3038659392 @default.
- W3096105851 cites W3044777640 @default.
- W3096105851 cites W4212883601 @default.
- W3096105851 cites W4248391971 @default.
- W3096105851 doi "https://doi.org/10.3390/app10217541" @default.
- W3096105851 hasPublicationYear "2020" @default.
- W3096105851 type Work @default.
- W3096105851 sameAs 3096105851 @default.
- W3096105851 citedByCount "13" @default.
- W3096105851 countsByYear W30961058512021 @default.
- W3096105851 countsByYear W30961058512022 @default.
- W3096105851 countsByYear W30961058512023 @default.
- W3096105851 crossrefType "journal-article" @default.
- W3096105851 hasAuthorship W3096105851A5006284276 @default.
- W3096105851 hasAuthorship W3096105851A5063550459 @default.
- W3096105851 hasAuthorship W3096105851A5085031765 @default.
- W3096105851 hasBestOaLocation W30961058511 @default.
- W3096105851 hasConcept C119857082 @default.
- W3096105851 hasConcept C136764020 @default.
- W3096105851 hasConcept C154945302 @default.
- W3096105851 hasConcept C17744445 @default.
- W3096105851 hasConcept C199539241 @default.
- W3096105851 hasConcept C2776359362 @default.
- W3096105851 hasConcept C2780469804 @default.
- W3096105851 hasConcept C39549134 @default.
- W3096105851 hasConcept C41008148 @default.
- W3096105851 hasConcept C45942800 @default.
- W3096105851 hasConcept C50644808 @default.
- W3096105851 hasConcept C518677369 @default.
- W3096105851 hasConcept C520049643 @default.
- W3096105851 hasConcept C94625758 @default.
- W3096105851 hasConceptScore W3096105851C119857082 @default.
- W3096105851 hasConceptScore W3096105851C136764020 @default.
- W3096105851 hasConceptScore W3096105851C154945302 @default.
- W3096105851 hasConceptScore W3096105851C17744445 @default.
- W3096105851 hasConceptScore W3096105851C199539241 @default.
- W3096105851 hasConceptScore W3096105851C2776359362 @default.
- W3096105851 hasConceptScore W3096105851C2780469804 @default.
- W3096105851 hasConceptScore W3096105851C39549134 @default.
- W3096105851 hasConceptScore W3096105851C41008148 @default.
- W3096105851 hasConceptScore W3096105851C45942800 @default.
- W3096105851 hasConceptScore W3096105851C50644808 @default.
- W3096105851 hasConceptScore W3096105851C518677369 @default.
- W3096105851 hasConceptScore W3096105851C520049643 @default.
- W3096105851 hasConceptScore W3096105851C94625758 @default.
- W3096105851 hasIssue "21" @default.
- W3096105851 hasLocation W30961058511 @default.
- W3096105851 hasLocation W30961058512 @default.
- W3096105851 hasLocation W30961058513 @default.
- W3096105851 hasOpenAccess W3096105851 @default.
- W3096105851 hasPrimaryLocation W30961058511 @default.
- W3096105851 hasRelatedWork W2810053714 @default.
- W3096105851 hasRelatedWork W3025582806 @default.
- W3096105851 hasRelatedWork W3136979370 @default.
- W3096105851 hasRelatedWork W4281560664 @default.
- W3096105851 hasRelatedWork W4281757034 @default.
- W3096105851 hasRelatedWork W4285046548 @default.
- W3096105851 hasRelatedWork W4285741730 @default.
- W3096105851 hasRelatedWork W4311847748 @default.
- W3096105851 hasRelatedWork W4313488044 @default.
- W3096105851 hasRelatedWork W4318350883 @default.
- W3096105851 hasVolume "10" @default.
- W3096105851 isParatext "false" @default.
- W3096105851 isRetracted "false" @default.
- W3096105851 magId "3096105851" @default.
- W3096105851 workType "article" @default.