Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096113005> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3096113005 abstract "ABSTRACTThis study investigates the use of neural networks for data assimilation of local data in the WRF model in Rio de Janeiro, Brazil. Surface and upper-air data (air temperature, relative humidity and wind speed and direction) from airport stations and 6-hour forecast from WRF are used as input for the model and the 3D-Var analysis for each grid point is used as target variable. Periods of 168h from 2014 and 2015 are used with 6h and 12h assimilation cycles for surface and upper-air data, respectively. The neural network model was built using the Multi-Particle Collision Algorithm (MPCA) where different topologies are tested until the optimum solution is found. Results show that the neural network is able to emulate the 3D-Var with root mean squared error (standard deviation), respectively, of 0.31 K (0.37 K), 3.10% (4.04%), 0.63 ms-1 (1.05 ms-1), 1.10 ms-1 (1.56 ms-1) for air temperature, relative humidity, u-component of the wind and v-component of the wind. Also, the results show the neural network method is able to run 71 times faster than the conventional method under similar hardware configurations. Redes Neurais Artificiais para Assimilação de Dados no Modelo WRF no Rio de Janeiro, BrazilRESUMOEste estudo investiga o uso de redes neurais para assimilação de dados locais no modelo WRF no Rio de Janeiro. Dados de superfície e do ar superior (temperatura do ar, umidade relativa e velocidade e direção do vento) das estações do aeroporto e previsão de 6 horas do WRF são usados como entrada para o modelo, e a análise 3D-Var para cada ponto da grade é usada como variável destino. Períodos de 168h de 2014 e 2015 são utilizados com ciclos de assimilação de 6h e 12h para dados de superfície e do ar superior, respectivamente. O modelo de rede neural foi construído usando o algoritmo de colisão de partículas múltiplas (MPCA), onde diferentes topologias são testadas até que a solução ideal seja encontrada. Os resultados mostram que a rede neural é capaz de emular o 3D-Var com raiz do erro quadrático médio (desvio padrão) de 0,31 K (0,37 K), 3,10% (4,04%), 0,63 ms -1 (1,05 ms -1), 1,10 ms -1 (1,56 ms -1) para temperatura do ar, umidade relativa, componente u do vento e componente v do vento. Além disso, os resultados mostram que o método de rede neural é capaz de rodar 71 vezes mais rápido que o método convencional em configurações de hardware semelhantes." @default.
- W3096113005 created "2020-11-09" @default.
- W3096113005 creator A5011923044 @default.
- W3096113005 creator A5012093187 @default.
- W3096113005 creator A5021766596 @default.
- W3096113005 creator A5027674171 @default.
- W3096113005 date "2020-04-28" @default.
- W3096113005 modified "2023-09-23" @default.
- W3096113005 title "Artificial Neural Network for Data Assimilation by WRF Model in Rio de Janeiro, Brazil" @default.
- W3096113005 cites W1596195796 @default.
- W3096113005 cites W178080135 @default.
- W3096113005 cites W2016866892 @default.
- W3096113005 cites W2020200523 @default.
- W3096113005 cites W2027669884 @default.
- W3096113005 cites W2028979275 @default.
- W3096113005 cites W2040870580 @default.
- W3096113005 cites W2041863660 @default.
- W3096113005 cites W2073767379 @default.
- W3096113005 cites W2081966301 @default.
- W3096113005 cites W2083339292 @default.
- W3096113005 cites W2107513045 @default.
- W3096113005 cites W2124776405 @default.
- W3096113005 cites W2179912439 @default.
- W3096113005 cites W2408746646 @default.
- W3096113005 cites W2587294737 @default.
- W3096113005 cites W2762815632 @default.
- W3096113005 cites W2783163725 @default.
- W3096113005 cites W2789207531 @default.
- W3096113005 cites W2917162594 @default.
- W3096113005 cites W2919115771 @default.
- W3096113005 cites W2996722888 @default.
- W3096113005 doi "https://doi.org/10.22564/rbgf.v38i2.2042" @default.
- W3096113005 hasPublicationYear "2020" @default.
- W3096113005 type Work @default.
- W3096113005 sameAs 3096113005 @default.
- W3096113005 citedByCount "1" @default.
- W3096113005 countsByYear W30961130052021 @default.
- W3096113005 crossrefType "journal-article" @default.
- W3096113005 hasAuthorship W3096113005A5011923044 @default.
- W3096113005 hasAuthorship W3096113005A5012093187 @default.
- W3096113005 hasAuthorship W3096113005A5021766596 @default.
- W3096113005 hasAuthorship W3096113005A5027674171 @default.
- W3096113005 hasConcept C105795698 @default.
- W3096113005 hasConcept C107775477 @default.
- W3096113005 hasConcept C119857082 @default.
- W3096113005 hasConcept C121332964 @default.
- W3096113005 hasConcept C133204551 @default.
- W3096113005 hasConcept C139945424 @default.
- W3096113005 hasConcept C151420433 @default.
- W3096113005 hasConcept C153294291 @default.
- W3096113005 hasConcept C158960510 @default.
- W3096113005 hasConcept C161067210 @default.
- W3096113005 hasConcept C24552861 @default.
- W3096113005 hasConcept C2983363897 @default.
- W3096113005 hasConcept C33923547 @default.
- W3096113005 hasConcept C39432304 @default.
- W3096113005 hasConcept C41008148 @default.
- W3096113005 hasConcept C50644808 @default.
- W3096113005 hasConceptScore W3096113005C105795698 @default.
- W3096113005 hasConceptScore W3096113005C107775477 @default.
- W3096113005 hasConceptScore W3096113005C119857082 @default.
- W3096113005 hasConceptScore W3096113005C121332964 @default.
- W3096113005 hasConceptScore W3096113005C133204551 @default.
- W3096113005 hasConceptScore W3096113005C139945424 @default.
- W3096113005 hasConceptScore W3096113005C151420433 @default.
- W3096113005 hasConceptScore W3096113005C153294291 @default.
- W3096113005 hasConceptScore W3096113005C158960510 @default.
- W3096113005 hasConceptScore W3096113005C161067210 @default.
- W3096113005 hasConceptScore W3096113005C24552861 @default.
- W3096113005 hasConceptScore W3096113005C2983363897 @default.
- W3096113005 hasConceptScore W3096113005C33923547 @default.
- W3096113005 hasConceptScore W3096113005C39432304 @default.
- W3096113005 hasConceptScore W3096113005C41008148 @default.
- W3096113005 hasConceptScore W3096113005C50644808 @default.
- W3096113005 hasLocation W30961130051 @default.
- W3096113005 hasOpenAccess W3096113005 @default.
- W3096113005 hasPrimaryLocation W30961130051 @default.
- W3096113005 hasRelatedWork W10148735 @default.
- W3096113005 hasRelatedWork W1047938 @default.
- W3096113005 hasRelatedWork W11851971 @default.
- W3096113005 hasRelatedWork W1205649 @default.
- W3096113005 hasRelatedWork W1921739 @default.
- W3096113005 hasRelatedWork W3210039 @default.
- W3096113005 hasRelatedWork W4840225 @default.
- W3096113005 hasRelatedWork W6940958 @default.
- W3096113005 hasRelatedWork W9774741 @default.
- W3096113005 hasRelatedWork W1428681 @default.
- W3096113005 isParatext "false" @default.
- W3096113005 isRetracted "false" @default.
- W3096113005 magId "3096113005" @default.
- W3096113005 workType "article" @default.