Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096140803> ?p ?o ?g. }
- W3096140803 endingPage "101201" @default.
- W3096140803 startingPage "101201" @default.
- W3096140803 abstract "In this paper, we compared the predictive capabilities of six different machine learning algorithms – linear regression, artificial neural network, random forest, extreme gradient boosting, light gradient boosting, and natural gradient boosting – and demonstrated that a hybrid light gradient boosting and natural gradient boosting model provides the most desirable construction cost estimates in terms of the accuracy metrics, uncertainty estimates, and training speed. We also present a game theory-based model interpretation technique to evaluate the average marginal contribution of each feature value, across all possible combinations of features, on the model predictions. The comparison between the predicted cost and the actual cost confirms good alignment with R2 ∼ 0.99, RMSE ∼ 0.5, and MBE ∼ -0.009. Besides, the proposed hybrid model can provide uncertainty estimates through probabilistic predictions for real-valued outputs. This probabilistic prediction approach produces a holistic probability distribution over the entire outcome space to quantify the uncertainties related to construction cost predictions." @default.
- W3096140803 created "2020-11-09" @default.
- W3096140803 creator A5008620176 @default.
- W3096140803 creator A5038784389 @default.
- W3096140803 creator A5075360975 @default.
- W3096140803 creator A5080572759 @default.
- W3096140803 date "2020-10-01" @default.
- W3096140803 modified "2023-10-16" @default.
- W3096140803 title "A novel construction cost prediction model using hybrid natural and light gradient boosting" @default.
- W3096140803 cites W1978939434 @default.
- W3096140803 cites W1985024263 @default.
- W3096140803 cites W2023597250 @default.
- W3096140803 cites W2023864852 @default.
- W3096140803 cites W2041738467 @default.
- W3096140803 cites W2044076868 @default.
- W3096140803 cites W2131128076 @default.
- W3096140803 cites W2139565874 @default.
- W3096140803 cites W2167911276 @default.
- W3096140803 cites W2195542135 @default.
- W3096140803 cites W2297143647 @default.
- W3096140803 cites W2490033382 @default.
- W3096140803 cites W2746680615 @default.
- W3096140803 cites W2749965856 @default.
- W3096140803 cites W2755839082 @default.
- W3096140803 cites W2762917629 @default.
- W3096140803 cites W2775509371 @default.
- W3096140803 cites W2886337448 @default.
- W3096140803 cites W2889272682 @default.
- W3096140803 cites W2911964244 @default.
- W3096140803 cites W2914820278 @default.
- W3096140803 cites W2930517500 @default.
- W3096140803 cites W2945364798 @default.
- W3096140803 cites W2980454061 @default.
- W3096140803 cites W2991131289 @default.
- W3096140803 cites W2996033081 @default.
- W3096140803 cites W2997931400 @default.
- W3096140803 cites W2999615587 @default.
- W3096140803 cites W3033707133 @default.
- W3096140803 cites W3037073197 @default.
- W3096140803 cites W3037409915 @default.
- W3096140803 cites W3102476541 @default.
- W3096140803 cites W4231109964 @default.
- W3096140803 doi "https://doi.org/10.1016/j.aei.2020.101201" @default.
- W3096140803 hasPublicationYear "2020" @default.
- W3096140803 type Work @default.
- W3096140803 sameAs 3096140803 @default.
- W3096140803 citedByCount "59" @default.
- W3096140803 countsByYear W30961408032021 @default.
- W3096140803 countsByYear W30961408032022 @default.
- W3096140803 countsByYear W30961408032023 @default.
- W3096140803 crossrefType "journal-article" @default.
- W3096140803 hasAuthorship W3096140803A5008620176 @default.
- W3096140803 hasAuthorship W3096140803A5038784389 @default.
- W3096140803 hasAuthorship W3096140803A5075360975 @default.
- W3096140803 hasAuthorship W3096140803A5080572759 @default.
- W3096140803 hasConcept C105795698 @default.
- W3096140803 hasConcept C119857082 @default.
- W3096140803 hasConcept C126255220 @default.
- W3096140803 hasConcept C154945302 @default.
- W3096140803 hasConcept C169258074 @default.
- W3096140803 hasConcept C2780150128 @default.
- W3096140803 hasConcept C33923547 @default.
- W3096140803 hasConcept C41008148 @default.
- W3096140803 hasConcept C46686674 @default.
- W3096140803 hasConcept C49937458 @default.
- W3096140803 hasConcept C50644808 @default.
- W3096140803 hasConcept C70153297 @default.
- W3096140803 hasConcept C83546350 @default.
- W3096140803 hasConceptScore W3096140803C105795698 @default.
- W3096140803 hasConceptScore W3096140803C119857082 @default.
- W3096140803 hasConceptScore W3096140803C126255220 @default.
- W3096140803 hasConceptScore W3096140803C154945302 @default.
- W3096140803 hasConceptScore W3096140803C169258074 @default.
- W3096140803 hasConceptScore W3096140803C2780150128 @default.
- W3096140803 hasConceptScore W3096140803C33923547 @default.
- W3096140803 hasConceptScore W3096140803C41008148 @default.
- W3096140803 hasConceptScore W3096140803C46686674 @default.
- W3096140803 hasConceptScore W3096140803C49937458 @default.
- W3096140803 hasConceptScore W3096140803C50644808 @default.
- W3096140803 hasConceptScore W3096140803C70153297 @default.
- W3096140803 hasConceptScore W3096140803C83546350 @default.
- W3096140803 hasLocation W30961408031 @default.
- W3096140803 hasOpenAccess W3096140803 @default.
- W3096140803 hasPrimaryLocation W30961408031 @default.
- W3096140803 hasRelatedWork W2073883415 @default.
- W3096140803 hasRelatedWork W2766514146 @default.
- W3096140803 hasRelatedWork W2885516856 @default.
- W3096140803 hasRelatedWork W2885778889 @default.
- W3096140803 hasRelatedWork W2967733078 @default.
- W3096140803 hasRelatedWork W3137904399 @default.
- W3096140803 hasRelatedWork W4289703016 @default.
- W3096140803 hasRelatedWork W4310224730 @default.
- W3096140803 hasRelatedWork W4310492845 @default.
- W3096140803 hasRelatedWork W4386690025 @default.
- W3096140803 hasVolume "46" @default.
- W3096140803 isParatext "false" @default.
- W3096140803 isRetracted "false" @default.
- W3096140803 magId "3096140803" @default.