Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096141168> ?p ?o ?g. }
- W3096141168 abstract "Data augmentation techniques have been widely used to improve machine learning performance as they enhance the generalization capability of models. In this work, to generate high quality synthetic data for low-resource tagging tasks, we propose a novel augmentation method with language models trained on the linearized labeled sentences. Our method is applicable to both supervised and semi-supervised settings. For the supervised settings, we conduct extensive experiments on named entity recognition (NER), part of speech (POS) tagging and end-to-end target based sentiment analysis (E2E-TBSA) tasks. For the semi-supervised settings, we evaluate our method on the NER task under the conditions of given unlabeled data only and unlabeled data plus a knowledge base. The results show that our method can consistently outperform the baselines, particularly when the given gold training data are less." @default.
- W3096141168 created "2020-11-09" @default.
- W3096141168 creator A5005443526 @default.
- W3096141168 creator A5015941893 @default.
- W3096141168 creator A5022583259 @default.
- W3096141168 creator A5039896971 @default.
- W3096141168 creator A5046427783 @default.
- W3096141168 creator A5046872618 @default.
- W3096141168 creator A5057035600 @default.
- W3096141168 creator A5086674741 @default.
- W3096141168 date "2020-11-03" @default.
- W3096141168 modified "2023-10-16" @default.
- W3096141168 title "DAGA: Data Augmentation with a Generation Approach for Low-resource Tagging Tasks" @default.
- W3096141168 cites W1522301498 @default.
- W3096141168 cites W1525961042 @default.
- W3096141168 cites W1600737329 @default.
- W3096141168 cites W1982982698 @default.
- W3096141168 cites W2016630033 @default.
- W3096141168 cites W2081580037 @default.
- W3096141168 cites W2144578941 @default.
- W3096141168 cites W2163514362 @default.
- W3096141168 cites W2251294039 @default.
- W3096141168 cites W2251648804 @default.
- W3096141168 cites W2252024663 @default.
- W3096141168 cites W2296283641 @default.
- W3096141168 cites W2402268235 @default.
- W3096141168 cites W2406222150 @default.
- W3096141168 cites W2460583509 @default.
- W3096141168 cites W2493916176 @default.
- W3096141168 cites W2593560537 @default.
- W3096141168 cites W2611231354 @default.
- W3096141168 cites W2696967604 @default.
- W3096141168 cites W2757541972 @default.
- W3096141168 cites W2880875857 @default.
- W3096141168 cites W2915429162 @default.
- W3096141168 cites W2946119234 @default.
- W3096141168 cites W2951899185 @default.
- W3096141168 cites W2952696830 @default.
- W3096141168 cites W2963216553 @default.
- W3096141168 cites W2963264961 @default.
- W3096141168 cites W2963336393 @default.
- W3096141168 cites W2963545917 @default.
- W3096141168 cites W2963737810 @default.
- W3096141168 cites W2964053384 @default.
- W3096141168 cites W2964090065 @default.
- W3096141168 cites W2964185534 @default.
- W3096141168 cites W2964236999 @default.
- W3096141168 cites W2965510113 @default.
- W3096141168 cites W2971296908 @default.
- W3096141168 cites W2973049837 @default.
- W3096141168 cites W2998184481 @default.
- W3096141168 cites W3010293452 @default.
- W3096141168 cites W3011594683 @default.
- W3096141168 cites W3012808012 @default.
- W3096141168 cites W3023125906 @default.
- W3096141168 cites W3098341425 @default.
- W3096141168 cites W3098609640 @default.
- W3096141168 doi "https://doi.org/10.48550/arxiv.2011.01549" @default.
- W3096141168 hasPublicationYear "2020" @default.
- W3096141168 type Work @default.
- W3096141168 sameAs 3096141168 @default.
- W3096141168 citedByCount "1" @default.
- W3096141168 countsByYear W30961411682021 @default.
- W3096141168 crossrefType "posted-content" @default.
- W3096141168 hasAuthorship W3096141168A5005443526 @default.
- W3096141168 hasAuthorship W3096141168A5015941893 @default.
- W3096141168 hasAuthorship W3096141168A5022583259 @default.
- W3096141168 hasAuthorship W3096141168A5039896971 @default.
- W3096141168 hasAuthorship W3096141168A5046427783 @default.
- W3096141168 hasAuthorship W3096141168A5046872618 @default.
- W3096141168 hasAuthorship W3096141168A5057035600 @default.
- W3096141168 hasAuthorship W3096141168A5086674741 @default.
- W3096141168 hasBestOaLocation W30961411681 @default.
- W3096141168 hasConcept C119857082 @default.
- W3096141168 hasConcept C134306372 @default.
- W3096141168 hasConcept C136389625 @default.
- W3096141168 hasConcept C154945302 @default.
- W3096141168 hasConcept C162324750 @default.
- W3096141168 hasConcept C177148314 @default.
- W3096141168 hasConcept C187736073 @default.
- W3096141168 hasConcept C204321447 @default.
- W3096141168 hasConcept C206345919 @default.
- W3096141168 hasConcept C2776145971 @default.
- W3096141168 hasConcept C2779135771 @default.
- W3096141168 hasConcept C2780451532 @default.
- W3096141168 hasConcept C31258907 @default.
- W3096141168 hasConcept C33923547 @default.
- W3096141168 hasConcept C41008148 @default.
- W3096141168 hasConcept C50644808 @default.
- W3096141168 hasConcept C51632099 @default.
- W3096141168 hasConcept C58973888 @default.
- W3096141168 hasConceptScore W3096141168C119857082 @default.
- W3096141168 hasConceptScore W3096141168C134306372 @default.
- W3096141168 hasConceptScore W3096141168C136389625 @default.
- W3096141168 hasConceptScore W3096141168C154945302 @default.
- W3096141168 hasConceptScore W3096141168C162324750 @default.
- W3096141168 hasConceptScore W3096141168C177148314 @default.
- W3096141168 hasConceptScore W3096141168C187736073 @default.
- W3096141168 hasConceptScore W3096141168C204321447 @default.
- W3096141168 hasConceptScore W3096141168C206345919 @default.