Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096194915> ?p ?o ?g. }
- W3096194915 abstract "Cancers are the leading cause of death in many countries. Early diagnosis plays a crucial role in having proper treatment for this debilitating disease. The automated classification of the type of cancer is a challenging task since pathologists must examine a huge number of histopathological images to detect infinitesimal abnormalities. In this study, we propose a novel convolutional neural network (CNN) architecture composed of a Concatenation of multiple Networks, called C-Net, to classify biomedical images. The model incorporates multiple CNNs including Outer, Middle, and Inner. The first two parts of the architecture contain six networks that serve as feature extractors to feed into the Inner network to classify the images in terms of malignancy and benignancy. The C-Net is applied for histopathological image classification on two public datasets, including BreakHis and Osteosarcoma. To evaluate the performance, the model is tested using several evaluation metrics for its reliability. The C-Net model outperforms all other models on the individual metrics for both datasets and achieves zero misclassification. This approach has the potential to be extended to additional classification tasks, as experimental results demonstrate utilizing extensive evaluation metrics." @default.
- W3096194915 created "2020-11-09" @default.
- W3096194915 creator A5012808984 @default.
- W3096194915 creator A5040845826 @default.
- W3096194915 date "2020-10-30" @default.
- W3096194915 modified "2023-09-27" @default.
- W3096194915 title "C-Net: A Reliable Convolutional Neural Network for Biomedical Image Classification" @default.
- W3096194915 cites W1250740847 @default.
- W3096194915 cites W1686810756 @default.
- W3096194915 cites W1799366690 @default.
- W3096194915 cites W1974195684 @default.
- W3096194915 cites W2076063813 @default.
- W3096194915 cites W2097117768 @default.
- W3096194915 cites W2128552148 @default.
- W3096194915 cites W2137682223 @default.
- W3096194915 cites W2147595228 @default.
- W3096194915 cites W2163605009 @default.
- W3096194915 cites W2344480160 @default.
- W3096194915 cites W2398641305 @default.
- W3096194915 cites W2557283755 @default.
- W3096194915 cites W2581082771 @default.
- W3096194915 cites W2592929672 @default.
- W3096194915 cites W2600283416 @default.
- W3096194915 cites W2605850958 @default.
- W3096194915 cites W2607075141 @default.
- W3096194915 cites W2620578070 @default.
- W3096194915 cites W2716665989 @default.
- W3096194915 cites W2771292748 @default.
- W3096194915 cites W2772030296 @default.
- W3096194915 cites W2783710041 @default.
- W3096194915 cites W2792902314 @default.
- W3096194915 cites W2883500730 @default.
- W3096194915 cites W2883935556 @default.
- W3096194915 cites W2889646458 @default.
- W3096194915 cites W2892961888 @default.
- W3096194915 cites W2900257566 @default.
- W3096194915 cites W2903119292 @default.
- W3096194915 cites W2906302663 @default.
- W3096194915 cites W2914010220 @default.
- W3096194915 cites W2928842276 @default.
- W3096194915 cites W2935748854 @default.
- W3096194915 cites W2952846726 @default.
- W3096194915 cites W2953350812 @default.
- W3096194915 cites W2954996726 @default.
- W3096194915 cites W2955042357 @default.
- W3096194915 cites W2963897729 @default.
- W3096194915 cites W2978636994 @default.
- W3096194915 cites W2982562138 @default.
- W3096194915 cites W2991603289 @default.
- W3096194915 cites W2995106101 @default.
- W3096194915 cites W2999309192 @default.
- W3096194915 cites W3009928129 @default.
- W3096194915 cites W3075287024 @default.
- W3096194915 cites W3088887713 @default.
- W3096194915 cites W3104138698 @default.
- W3096194915 cites W3180014654 @default.
- W3096194915 cites W2912396807 @default.
- W3096194915 doi "https://doi.org/10.48550/arxiv.2011.00081" @default.
- W3096194915 hasPublicationYear "2020" @default.
- W3096194915 type Work @default.
- W3096194915 sameAs 3096194915 @default.
- W3096194915 citedByCount "0" @default.
- W3096194915 crossrefType "posted-content" @default.
- W3096194915 hasAuthorship W3096194915A5012808984 @default.
- W3096194915 hasAuthorship W3096194915A5040845826 @default.
- W3096194915 hasBestOaLocation W30961949151 @default.
- W3096194915 hasConcept C108583219 @default.
- W3096194915 hasConcept C114614502 @default.
- W3096194915 hasConcept C115961682 @default.
- W3096194915 hasConcept C119857082 @default.
- W3096194915 hasConcept C124101348 @default.
- W3096194915 hasConcept C138885662 @default.
- W3096194915 hasConcept C14166107 @default.
- W3096194915 hasConcept C153180895 @default.
- W3096194915 hasConcept C154945302 @default.
- W3096194915 hasConcept C162324750 @default.
- W3096194915 hasConcept C187736073 @default.
- W3096194915 hasConcept C2524010 @default.
- W3096194915 hasConcept C2776401178 @default.
- W3096194915 hasConcept C2780451532 @default.
- W3096194915 hasConcept C33923547 @default.
- W3096194915 hasConcept C41008148 @default.
- W3096194915 hasConcept C41895202 @default.
- W3096194915 hasConcept C50644808 @default.
- W3096194915 hasConcept C75294576 @default.
- W3096194915 hasConcept C81363708 @default.
- W3096194915 hasConcept C87619178 @default.
- W3096194915 hasConceptScore W3096194915C108583219 @default.
- W3096194915 hasConceptScore W3096194915C114614502 @default.
- W3096194915 hasConceptScore W3096194915C115961682 @default.
- W3096194915 hasConceptScore W3096194915C119857082 @default.
- W3096194915 hasConceptScore W3096194915C124101348 @default.
- W3096194915 hasConceptScore W3096194915C138885662 @default.
- W3096194915 hasConceptScore W3096194915C14166107 @default.
- W3096194915 hasConceptScore W3096194915C153180895 @default.
- W3096194915 hasConceptScore W3096194915C154945302 @default.
- W3096194915 hasConceptScore W3096194915C162324750 @default.
- W3096194915 hasConceptScore W3096194915C187736073 @default.
- W3096194915 hasConceptScore W3096194915C2524010 @default.
- W3096194915 hasConceptScore W3096194915C2776401178 @default.