Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096265364> ?p ?o ?g. }
- W3096265364 endingPage "2400" @default.
- W3096265364 startingPage "2384" @default.
- W3096265364 abstract "Since the first two novel coronavirus cases appeared in January of 2020, the outbreak of the COVID-19 epidemic seriously threatens the public health of Italy. In this article, the distribution characteristics and spreading of COVID-19 in various regions of Italy were analysed by heat maps. Meanwhile, spatial autocorrelation, spatiotemporal clustering analysis and kernel density method were also applied to analyse the spatial clustering of COVID-19. The results showed that the Italian epidemic has a temporal trend and spatial aggregation. The epidemic was concentrated in northern Italy and gradually spread to other regions. Finally, the Google Trends index of the COVID-19 epidemic was further employed to build a prediction model combined with machine learning algorithms. By using Adaboost algorithm for single-factor modelling,the results show that the AUC of these six features (mask, pneumonia, thermometer, ISS, disinfection and disposable gloves) are all >0.9, indicating that these features have a large contribution to the prediction model. It is also implied that the public's attention to the epidemic is increasing as well as the awareness of the need for protective measures. This increased awareness of the epidemic will prompt the public to pay more attention to protective measures, thereby reducing the risk of coronavirus infection." @default.
- W3096265364 created "2020-11-09" @default.
- W3096265364 creator A5003759585 @default.
- W3096265364 creator A5028293439 @default.
- W3096265364 creator A5034448506 @default.
- W3096265364 creator A5045397704 @default.
- W3096265364 creator A5046761724 @default.
- W3096265364 creator A5050287917 @default.
- W3096265364 creator A5061571808 @default.
- W3096265364 creator A5087318569 @default.
- W3096265364 date "2020-11-27" @default.
- W3096265364 modified "2023-10-09" @default.
- W3096265364 title "Epidemic analysis of COVID‐19 in Italy based on spatiotemporal geographic information and Google Trends" @default.
- W3096265364 cites W1901616594 @default.
- W3096265364 cites W1987458606 @default.
- W3096265364 cites W1987859285 @default.
- W3096265364 cites W1988790447 @default.
- W3096265364 cites W1993435091 @default.
- W3096265364 cites W1998956117 @default.
- W3096265364 cites W2017539781 @default.
- W3096265364 cites W2020084859 @default.
- W3096265364 cites W2043986160 @default.
- W3096265364 cites W2118946263 @default.
- W3096265364 cites W2119721623 @default.
- W3096265364 cites W2127441305 @default.
- W3096265364 cites W2151499620 @default.
- W3096265364 cites W2152966907 @default.
- W3096265364 cites W2169459302 @default.
- W3096265364 cites W2216946510 @default.
- W3096265364 cites W2244535715 @default.
- W3096265364 cites W2477032014 @default.
- W3096265364 cites W2524427197 @default.
- W3096265364 cites W2610135452 @default.
- W3096265364 cites W2623192043 @default.
- W3096265364 cites W2739924525 @default.
- W3096265364 cites W2784094750 @default.
- W3096265364 cites W2887706151 @default.
- W3096265364 cites W2903899730 @default.
- W3096265364 cites W2911964244 @default.
- W3096265364 cites W2963929932 @default.
- W3096265364 cites W3001118548 @default.
- W3096265364 cites W3002108456 @default.
- W3096265364 cites W3002539152 @default.
- W3096265364 cites W3008049045 @default.
- W3096265364 cites W3008963226 @default.
- W3096265364 cites W3009468976 @default.
- W3096265364 cites W3011242477 @default.
- W3096265364 cites W3012603648 @default.
- W3096265364 cites W3014524604 @default.
- W3096265364 cites W3014680059 @default.
- W3096265364 cites W3015698531 @default.
- W3096265364 cites W3017197322 @default.
- W3096265364 cites W3019445951 @default.
- W3096265364 cites W3023175268 @default.
- W3096265364 cites W3033503930 @default.
- W3096265364 cites W3035015856 @default.
- W3096265364 cites W3038027147 @default.
- W3096265364 cites W3041476503 @default.
- W3096265364 cites W2500329286 @default.
- W3096265364 doi "https://doi.org/10.1111/tbed.13902" @default.
- W3096265364 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33128853" @default.
- W3096265364 hasPublicationYear "2020" @default.
- W3096265364 type Work @default.
- W3096265364 sameAs 3096265364 @default.
- W3096265364 citedByCount "9" @default.
- W3096265364 countsByYear W30962653642021 @default.
- W3096265364 countsByYear W30962653642022 @default.
- W3096265364 countsByYear W30962653642023 @default.
- W3096265364 crossrefType "journal-article" @default.
- W3096265364 hasAuthorship W3096265364A5003759585 @default.
- W3096265364 hasAuthorship W3096265364A5028293439 @default.
- W3096265364 hasAuthorship W3096265364A5034448506 @default.
- W3096265364 hasAuthorship W3096265364A5045397704 @default.
- W3096265364 hasAuthorship W3096265364A5046761724 @default.
- W3096265364 hasAuthorship W3096265364A5050287917 @default.
- W3096265364 hasAuthorship W3096265364A5061571808 @default.
- W3096265364 hasAuthorship W3096265364A5087318569 @default.
- W3096265364 hasBestOaLocation W30962653641 @default.
- W3096265364 hasConcept C105795698 @default.
- W3096265364 hasConcept C116675565 @default.
- W3096265364 hasConcept C142724271 @default.
- W3096265364 hasConcept C149782125 @default.
- W3096265364 hasConcept C154945302 @default.
- W3096265364 hasConcept C159047783 @default.
- W3096265364 hasConcept C159620131 @default.
- W3096265364 hasConcept C205649164 @default.
- W3096265364 hasConcept C2777648638 @default.
- W3096265364 hasConcept C2779134260 @default.
- W3096265364 hasConcept C3008058167 @default.
- W3096265364 hasConcept C33923547 @default.
- W3096265364 hasConcept C41008148 @default.
- W3096265364 hasConcept C41856607 @default.
- W3096265364 hasConcept C524204448 @default.
- W3096265364 hasConcept C58640448 @default.
- W3096265364 hasConcept C62649853 @default.
- W3096265364 hasConcept C71924100 @default.
- W3096265364 hasConcept C73555534 @default.
- W3096265364 hasConceptScore W3096265364C105795698 @default.