Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096276656> ?p ?o ?g. }
- W3096276656 endingPage "045401" @default.
- W3096276656 startingPage "045401" @default.
- W3096276656 abstract "Abstract Non-destructive testing is a popular technique for defect assessment of composite materials, where machine learning models become more important in its data analysis. Nevertheless, deep learning, which has achieved state-of-the-art results in many tasks, has received less attention in this field. Herein, a generative independent component (IC) thermography method is proposed. In detail, a generative adversarial network is implemented for image augmentation, which generates fake thermal images that mimic the patterns of real measurements. In doing this, the sample size is enlarged and the defect information contained in the images is enriched. Then, both the real and fake thermal images are decomposed by IC analysis, which separates the defect signals represented by non-Gaussian sources and the non-uniform backgrounds caused by uneven heating. Consequently, the defect detection results are improved. The performance of the proposed method on a polymer composite specimen demonstrates its effectiveness." @default.
- W3096276656 created "2020-11-09" @default.
- W3096276656 creator A5000492991 @default.
- W3096276656 creator A5008659449 @default.
- W3096276656 creator A5010031720 @default.
- W3096276656 creator A5036748884 @default.
- W3096276656 creator A5057294139 @default.
- W3096276656 creator A5065156994 @default.
- W3096276656 date "2021-01-15" @default.
- W3096276656 modified "2023-10-18" @default.
- W3096276656 title "A thermographic data augmentation and signal separation method for defect detection" @default.
- W3096276656 cites W1964971763 @default.
- W3096276656 cites W1972316953 @default.
- W3096276656 cites W1987458554 @default.
- W3096276656 cites W1995052565 @default.
- W3096276656 cites W2000523966 @default.
- W3096276656 cites W2016898578 @default.
- W3096276656 cites W2030946888 @default.
- W3096276656 cites W2039060449 @default.
- W3096276656 cites W2062110473 @default.
- W3096276656 cites W2075297004 @default.
- W3096276656 cites W2083399560 @default.
- W3096276656 cites W2089528765 @default.
- W3096276656 cites W2112796928 @default.
- W3096276656 cites W2123649031 @default.
- W3096276656 cites W2141224535 @default.
- W3096276656 cites W257526726 @default.
- W3096276656 cites W2588925976 @default.
- W3096276656 cites W2792451631 @default.
- W3096276656 cites W2794022343 @default.
- W3096276656 cites W2795715889 @default.
- W3096276656 cites W2888045512 @default.
- W3096276656 cites W2913592448 @default.
- W3096276656 cites W2919115771 @default.
- W3096276656 cites W2922179111 @default.
- W3096276656 cites W2981522341 @default.
- W3096276656 cites W2995527107 @default.
- W3096276656 cites W2998320282 @default.
- W3096276656 cites W3018717613 @default.
- W3096276656 cites W3023621413 @default.
- W3096276656 cites W821477359 @default.
- W3096276656 cites W94661297 @default.
- W3096276656 doi "https://doi.org/10.1088/1361-6501/abc63f" @default.
- W3096276656 hasPublicationYear "2021" @default.
- W3096276656 type Work @default.
- W3096276656 sameAs 3096276656 @default.
- W3096276656 citedByCount "16" @default.
- W3096276656 countsByYear W30962766562021 @default.
- W3096276656 countsByYear W30962766562022 @default.
- W3096276656 countsByYear W30962766562023 @default.
- W3096276656 crossrefType "journal-article" @default.
- W3096276656 hasAuthorship W3096276656A5000492991 @default.
- W3096276656 hasAuthorship W3096276656A5008659449 @default.
- W3096276656 hasAuthorship W3096276656A5010031720 @default.
- W3096276656 hasAuthorship W3096276656A5036748884 @default.
- W3096276656 hasAuthorship W3096276656A5057294139 @default.
- W3096276656 hasAuthorship W3096276656A5065156994 @default.
- W3096276656 hasConcept C115961682 @default.
- W3096276656 hasConcept C119857082 @default.
- W3096276656 hasConcept C120665830 @default.
- W3096276656 hasConcept C121332964 @default.
- W3096276656 hasConcept C153180895 @default.
- W3096276656 hasConcept C153294291 @default.
- W3096276656 hasConcept C154945302 @default.
- W3096276656 hasConcept C158355884 @default.
- W3096276656 hasConcept C163716315 @default.
- W3096276656 hasConcept C198531522 @default.
- W3096276656 hasConcept C199360897 @default.
- W3096276656 hasConcept C202444582 @default.
- W3096276656 hasConcept C204530211 @default.
- W3096276656 hasConcept C2779222261 @default.
- W3096276656 hasConcept C2779843651 @default.
- W3096276656 hasConcept C2988773926 @default.
- W3096276656 hasConcept C33923547 @default.
- W3096276656 hasConcept C39890363 @default.
- W3096276656 hasConcept C41008148 @default.
- W3096276656 hasConcept C50644808 @default.
- W3096276656 hasConcept C62520636 @default.
- W3096276656 hasConcept C9652623 @default.
- W3096276656 hasConcept C97355855 @default.
- W3096276656 hasConceptScore W3096276656C115961682 @default.
- W3096276656 hasConceptScore W3096276656C119857082 @default.
- W3096276656 hasConceptScore W3096276656C120665830 @default.
- W3096276656 hasConceptScore W3096276656C121332964 @default.
- W3096276656 hasConceptScore W3096276656C153180895 @default.
- W3096276656 hasConceptScore W3096276656C153294291 @default.
- W3096276656 hasConceptScore W3096276656C154945302 @default.
- W3096276656 hasConceptScore W3096276656C158355884 @default.
- W3096276656 hasConceptScore W3096276656C163716315 @default.
- W3096276656 hasConceptScore W3096276656C198531522 @default.
- W3096276656 hasConceptScore W3096276656C199360897 @default.
- W3096276656 hasConceptScore W3096276656C202444582 @default.
- W3096276656 hasConceptScore W3096276656C204530211 @default.
- W3096276656 hasConceptScore W3096276656C2779222261 @default.
- W3096276656 hasConceptScore W3096276656C2779843651 @default.
- W3096276656 hasConceptScore W3096276656C2988773926 @default.
- W3096276656 hasConceptScore W3096276656C33923547 @default.
- W3096276656 hasConceptScore W3096276656C39890363 @default.