Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096355846> ?p ?o ?g. }
- W3096355846 endingPage "104" @default.
- W3096355846 startingPage "104" @default.
- W3096355846 abstract "Beer quality is a difficult concept to describe and assess by physicochemical and sensory analysis due to the complexity of beer appreciation and acceptability by consumers, which can be dynamic and related to changes in climate affecting raw materials, consumer preference, and rising quality requirements. Artificial intelligence (AI) may offer unique capabilities based on the integration of sensor technology, robotics, and data analysis using machine learning (ML) to identify specific quality traits and process modifications to produce quality beers. This research presented the integration and implementation of AI technology based on low-cost sensor networks in the form of an electronic nose (e-nose), robotics, and ML. Results of ML showed high accuracy (97%) in the identification of fermentation type (Model 1) based on e-nose data; prediction of consumer acceptability from near-infrared (Model 2; R = 0.90) and e-nose data (Model 3; R = 0.95), and physicochemical and colorimetry of beers from e-nose data. The use of the RoboBEER coupled with the e-nose and AI could be used by brewers to assess the fermentation process, quality of beers, detection of faults, traceability, and authentication purposes in an affordable, user-friendly, and accurate manner." @default.
- W3096355846 created "2020-11-09" @default.
- W3096355846 creator A5031627534 @default.
- W3096355846 creator A5036304829 @default.
- W3096355846 date "2020-10-31" @default.
- W3096355846 modified "2023-09-25" @default.
- W3096355846 title "Low-Cost Methods to Assess Beer Quality Using Artificial Intelligence Involving Robotics, an Electronic Nose, and Machine Learning" @default.
- W3096355846 cites W1784415836 @default.
- W3096355846 cites W1992933031 @default.
- W3096355846 cites W2002942291 @default.
- W3096355846 cites W2024285420 @default.
- W3096355846 cites W2032110573 @default.
- W3096355846 cites W2032800362 @default.
- W3096355846 cites W2042527364 @default.
- W3096355846 cites W2043228294 @default.
- W3096355846 cites W2049104585 @default.
- W3096355846 cites W2069742713 @default.
- W3096355846 cites W2092111137 @default.
- W3096355846 cites W2100146060 @default.
- W3096355846 cites W2144987596 @default.
- W3096355846 cites W2165899560 @default.
- W3096355846 cites W2172212990 @default.
- W3096355846 cites W2495326970 @default.
- W3096355846 cites W2516948757 @default.
- W3096355846 cites W2599720829 @default.
- W3096355846 cites W2606020972 @default.
- W3096355846 cites W2610765550 @default.
- W3096355846 cites W2623312791 @default.
- W3096355846 cites W2729913834 @default.
- W3096355846 cites W2735237665 @default.
- W3096355846 cites W2736937856 @default.
- W3096355846 cites W2766390436 @default.
- W3096355846 cites W2768181036 @default.
- W3096355846 cites W2768808862 @default.
- W3096355846 cites W2790696663 @default.
- W3096355846 cites W2794757393 @default.
- W3096355846 cites W2796004279 @default.
- W3096355846 cites W2801169051 @default.
- W3096355846 cites W2889692310 @default.
- W3096355846 cites W2896187498 @default.
- W3096355846 cites W2901133964 @default.
- W3096355846 cites W2908189717 @default.
- W3096355846 cites W2949341660 @default.
- W3096355846 cites W2952455565 @default.
- W3096355846 cites W2965428057 @default.
- W3096355846 cites W2988602110 @default.
- W3096355846 cites W2997609974 @default.
- W3096355846 cites W2998807167 @default.
- W3096355846 cites W3013527146 @default.
- W3096355846 cites W3021983841 @default.
- W3096355846 cites W3029176538 @default.
- W3096355846 cites W3035540387 @default.
- W3096355846 cites W3038362219 @default.
- W3096355846 cites W3042322707 @default.
- W3096355846 cites W3045267865 @default.
- W3096355846 cites W3084012071 @default.
- W3096355846 cites W3090206925 @default.
- W3096355846 doi "https://doi.org/10.3390/fermentation6040104" @default.
- W3096355846 hasPublicationYear "2020" @default.
- W3096355846 type Work @default.
- W3096355846 sameAs 3096355846 @default.
- W3096355846 citedByCount "17" @default.
- W3096355846 countsByYear W30963558462021 @default.
- W3096355846 countsByYear W30963558462022 @default.
- W3096355846 countsByYear W30963558462023 @default.
- W3096355846 crossrefType "journal-article" @default.
- W3096355846 hasAuthorship W3096355846A5031627534 @default.
- W3096355846 hasAuthorship W3096355846A5036304829 @default.
- W3096355846 hasBestOaLocation W30963558461 @default.
- W3096355846 hasConcept C111472728 @default.
- W3096355846 hasConcept C119857082 @default.
- W3096355846 hasConcept C138885662 @default.
- W3096355846 hasConcept C154945302 @default.
- W3096355846 hasConcept C162244969 @default.
- W3096355846 hasConcept C185592680 @default.
- W3096355846 hasConcept C23895516 @default.
- W3096355846 hasConcept C2779530757 @default.
- W3096355846 hasConcept C31903555 @default.
- W3096355846 hasConcept C34413123 @default.
- W3096355846 hasConcept C41008148 @default.
- W3096355846 hasConcept C8868529 @default.
- W3096355846 hasConcept C90509273 @default.
- W3096355846 hasConceptScore W3096355846C111472728 @default.
- W3096355846 hasConceptScore W3096355846C119857082 @default.
- W3096355846 hasConceptScore W3096355846C138885662 @default.
- W3096355846 hasConceptScore W3096355846C154945302 @default.
- W3096355846 hasConceptScore W3096355846C162244969 @default.
- W3096355846 hasConceptScore W3096355846C185592680 @default.
- W3096355846 hasConceptScore W3096355846C23895516 @default.
- W3096355846 hasConceptScore W3096355846C2779530757 @default.
- W3096355846 hasConceptScore W3096355846C31903555 @default.
- W3096355846 hasConceptScore W3096355846C34413123 @default.
- W3096355846 hasConceptScore W3096355846C41008148 @default.
- W3096355846 hasConceptScore W3096355846C8868529 @default.
- W3096355846 hasConceptScore W3096355846C90509273 @default.
- W3096355846 hasIssue "4" @default.
- W3096355846 hasLocation W30963558461 @default.
- W3096355846 hasLocation W30963558462 @default.