Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096407730> ?p ?o ?g. }
- W3096407730 endingPage "304" @default.
- W3096407730 startingPage "280" @default.
- W3096407730 abstract "In literature, Clustered Shortest-Path Tree Problem (CluSPT) is an NP-hard problem. Previous studies focus on approximation algorithms which search for an optimal solution in relatively large space. Thus, these algorithms consume a large amount of computational resources while the quality of obtained results is lower than expected. In order to enhance the performance of the search process, this paper proposes two different approaches which are inspired by two perspectives of analyzing the CluSPT. The first approach intuition is to narrow down the search space by reducing the original graph into a multi-graph with fewer nodes while maintaining the ability to find the optimal solution. The problem is then solved by a proposed evolutionary algorithm. This approach performs well on those datasets having small number of edges between clusters. However, the increase in the size of the datasets would cause the excessive redundant edges in multi-graph that pressurize searching for potential solutions. The second approach overcomes this limitation by breaking down the multi-graph into a set of simple graphs. Every graph in this set is corresponding to a mutually exclusive search space. From this point of view, the problem could be modeled into a bi-level optimization problem in which the search space includes two nested search spaces. Accordingly, the Nested Local Search Evolutionary Algorithm (N-LSEA) is introduced to search for the optimal solution of glscluspt, the upper level uses a simple Local Search algorithm while the lower level uses the Genetic Algorithm. Due to the neighboring characteristics of the local search step in the upper level, the lower level reduced graphs share the common traits among each others. Thus, the Multi-tasking Local Search Evolutionary Algorithm (MLSEA) is proposed to take advantages of these underlying commonalities by exploiting the implicit transfer across similar tasks of multi-tasking schemes. The improvement in experimental results over N-LSEA via this multi-tasking scheme inspires the future works to apply M-LSEA in graph-based problems, especially for those could be modeled into bi-level optimization." @default.
- W3096407730 created "2020-11-09" @default.
- W3096407730 creator A5037098654 @default.
- W3096407730 creator A5065322322 @default.
- W3096407730 creator A5072105691 @default.
- W3096407730 date "2021-04-01" @default.
- W3096407730 modified "2023-10-16" @default.
- W3096407730 title "Evolutionary algorithm and multifactorial evolutionary algorithm on clustered shortest-path tree problem" @default.
- W3096407730 cites W1077212886 @default.
- W3096407730 cites W1592079528 @default.
- W3096407730 cites W1979380639 @default.
- W3096407730 cites W1986593951 @default.
- W3096407730 cites W2013365934 @default.
- W3096407730 cites W2013437272 @default.
- W3096407730 cites W2018754467 @default.
- W3096407730 cites W2021178645 @default.
- W3096407730 cites W2031673408 @default.
- W3096407730 cites W2032789430 @default.
- W3096407730 cites W2079104779 @default.
- W3096407730 cites W2084575232 @default.
- W3096407730 cites W2096166399 @default.
- W3096407730 cites W2114809881 @default.
- W3096407730 cites W2142146559 @default.
- W3096407730 cites W2158280690 @default.
- W3096407730 cites W2172255557 @default.
- W3096407730 cites W2259507927 @default.
- W3096407730 cites W2291204103 @default.
- W3096407730 cites W2294818690 @default.
- W3096407730 cites W2322565568 @default.
- W3096407730 cites W2373493542 @default.
- W3096407730 cites W2413527939 @default.
- W3096407730 cites W2566128861 @default.
- W3096407730 cites W2586910743 @default.
- W3096407730 cites W2588058706 @default.
- W3096407730 cites W2614564353 @default.
- W3096407730 cites W2625566893 @default.
- W3096407730 cites W2727592975 @default.
- W3096407730 cites W2737296775 @default.
- W3096407730 cites W2793740761 @default.
- W3096407730 cites W2897353395 @default.
- W3096407730 cites W2923639984 @default.
- W3096407730 cites W2945963656 @default.
- W3096407730 cites W2963795223 @default.
- W3096407730 cites W3104621635 @default.
- W3096407730 cites W3105042430 @default.
- W3096407730 doi "https://doi.org/10.1016/j.ins.2020.10.024" @default.
- W3096407730 hasPublicationYear "2021" @default.
- W3096407730 type Work @default.
- W3096407730 sameAs 3096407730 @default.
- W3096407730 citedByCount "24" @default.
- W3096407730 countsByYear W30964077302021 @default.
- W3096407730 countsByYear W30964077302022 @default.
- W3096407730 countsByYear W30964077302023 @default.
- W3096407730 crossrefType "journal-article" @default.
- W3096407730 hasAuthorship W3096407730A5037098654 @default.
- W3096407730 hasAuthorship W3096407730A5065322322 @default.
- W3096407730 hasAuthorship W3096407730A5072105691 @default.
- W3096407730 hasBestOaLocation W30964077302 @default.
- W3096407730 hasConcept C11413529 @default.
- W3096407730 hasConcept C125583679 @default.
- W3096407730 hasConcept C126255220 @default.
- W3096407730 hasConcept C132525143 @default.
- W3096407730 hasConcept C159149176 @default.
- W3096407730 hasConcept C19889080 @default.
- W3096407730 hasConcept C22590252 @default.
- W3096407730 hasConcept C33923547 @default.
- W3096407730 hasConcept C41008148 @default.
- W3096407730 hasConcept C46011968 @default.
- W3096407730 hasConcept C80444323 @default.
- W3096407730 hasConceptScore W3096407730C11413529 @default.
- W3096407730 hasConceptScore W3096407730C125583679 @default.
- W3096407730 hasConceptScore W3096407730C126255220 @default.
- W3096407730 hasConceptScore W3096407730C132525143 @default.
- W3096407730 hasConceptScore W3096407730C159149176 @default.
- W3096407730 hasConceptScore W3096407730C19889080 @default.
- W3096407730 hasConceptScore W3096407730C22590252 @default.
- W3096407730 hasConceptScore W3096407730C33923547 @default.
- W3096407730 hasConceptScore W3096407730C41008148 @default.
- W3096407730 hasConceptScore W3096407730C46011968 @default.
- W3096407730 hasConceptScore W3096407730C80444323 @default.
- W3096407730 hasFunder F4320322662 @default.
- W3096407730 hasFunder F4320337807 @default.
- W3096407730 hasLocation W30964077301 @default.
- W3096407730 hasLocation W30964077302 @default.
- W3096407730 hasOpenAccess W3096407730 @default.
- W3096407730 hasPrimaryLocation W30964077301 @default.
- W3096407730 hasRelatedWork W1622225657 @default.
- W3096407730 hasRelatedWork W2064794194 @default.
- W3096407730 hasRelatedWork W2081821176 @default.
- W3096407730 hasRelatedWork W2115576180 @default.
- W3096407730 hasRelatedWork W2354057059 @default.
- W3096407730 hasRelatedWork W2368028352 @default.
- W3096407730 hasRelatedWork W2376570066 @default.
- W3096407730 hasRelatedWork W2582091787 @default.
- W3096407730 hasRelatedWork W4200104947 @default.
- W3096407730 hasRelatedWork W4214503203 @default.
- W3096407730 hasVolume "553" @default.
- W3096407730 isParatext "false" @default.