Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096450408> ?p ?o ?g. }
- W3096450408 abstract "Recently, deep neural networks have expanded the state-of-art in various scientific fields and provided solutions to long standing problems across multiple application domains. Nevertheless, they also suffer from weaknesses since their optimal performance depends on massive amounts of training data and the tuning of an extended number of parameters. As a countermeasure, some deep-forest methods have been recently proposed, as efficient and low-scale solutions. Despite that, these approaches simply employ label classification probabilities as induced features and primarily focus on traditional classification and regression tasks, leaving multi-output prediction under-explored. Moreover, recent work has demonstrated that tree-embeddings are highly representative, especially in structured output prediction. In this direction, we propose a novel deep tree-ensemble (DTE) model, where every layer enriches the original feature set with a representation learning component based on tree-embeddings. In this paper, we specifically focus on two structured output prediction tasks, namely multi-label classification and multi-target regression. We conducted experiments using multiple benchmark datasets and the obtained results confirm that our method provides superior results to state-of-the-art methods in both tasks." @default.
- W3096450408 created "2020-11-09" @default.
- W3096450408 creator A5035151653 @default.
- W3096450408 creator A5044903173 @default.
- W3096450408 creator A5057504672 @default.
- W3096450408 date "2020-11-03" @default.
- W3096450408 modified "2023-09-25" @default.
- W3096450408 title "Deep tree-ensembles for multi-output prediction" @default.
- W3096450408 cites W1570448133 @default.
- W3096450408 cites W1901616594 @default.
- W3096450408 cites W1970571562 @default.
- W3096450408 cites W1984672166 @default.
- W3096450408 cites W2009985472 @default.
- W3096450408 cites W2033072307 @default.
- W3096450408 cites W2052684427 @default.
- W3096450408 cites W2056132907 @default.
- W3096450408 cites W2114315281 @default.
- W3096450408 cites W2138290126 @default.
- W3096450408 cites W2148143831 @default.
- W3096450408 cites W2183087644 @default.
- W3096450408 cites W2529143702 @default.
- W3096450408 cites W2581082771 @default.
- W3096450408 cites W2592340788 @default.
- W3096450408 cites W2726719681 @default.
- W3096450408 cites W2789758093 @default.
- W3096450408 cites W2798909945 @default.
- W3096450408 cites W2883784695 @default.
- W3096450408 cites W2891165828 @default.
- W3096450408 cites W2911535432 @default.
- W3096450408 cites W2911964244 @default.
- W3096450408 cites W2935703330 @default.
- W3096450408 cites W2948671658 @default.
- W3096450408 cites W2977069059 @default.
- W3096450408 cites W2979513031 @default.
- W3096450408 cites W2982112268 @default.
- W3096450408 cites W2982619390 @default.
- W3096450408 cites W2982857584 @default.
- W3096450408 cites W2997136715 @default.
- W3096450408 cites W2998548481 @default.
- W3096450408 cites W3006711652 @default.
- W3096450408 cites W3010962912 @default.
- W3096450408 cites W3035460133 @default.
- W3096450408 cites W3043995050 @default.
- W3096450408 cites W3048192479 @default.
- W3096450408 cites W3054552769 @default.
- W3096450408 cites W3082192989 @default.
- W3096450408 cites W3091262782 @default.
- W3096450408 cites W3130451294 @default.
- W3096450408 cites W3135745701 @default.
- W3096450408 cites W55768394 @default.
- W3096450408 hasPublicationYear "2020" @default.
- W3096450408 type Work @default.
- W3096450408 sameAs 3096450408 @default.
- W3096450408 citedByCount "0" @default.
- W3096450408 crossrefType "posted-content" @default.
- W3096450408 hasAuthorship W3096450408A5035151653 @default.
- W3096450408 hasAuthorship W3096450408A5044903173 @default.
- W3096450408 hasAuthorship W3096450408A5057504672 @default.
- W3096450408 hasConcept C105795698 @default.
- W3096450408 hasConcept C108583219 @default.
- W3096450408 hasConcept C113174947 @default.
- W3096450408 hasConcept C119857082 @default.
- W3096450408 hasConcept C120665830 @default.
- W3096450408 hasConcept C121332964 @default.
- W3096450408 hasConcept C124101348 @default.
- W3096450408 hasConcept C13280743 @default.
- W3096450408 hasConcept C134306372 @default.
- W3096450408 hasConcept C138885662 @default.
- W3096450408 hasConcept C154945302 @default.
- W3096450408 hasConcept C177264268 @default.
- W3096450408 hasConcept C17744445 @default.
- W3096450408 hasConcept C185798385 @default.
- W3096450408 hasConcept C192209626 @default.
- W3096450408 hasConcept C199360897 @default.
- W3096450408 hasConcept C199539241 @default.
- W3096450408 hasConcept C205649164 @default.
- W3096450408 hasConcept C2776359362 @default.
- W3096450408 hasConcept C2776401178 @default.
- W3096450408 hasConcept C33923547 @default.
- W3096450408 hasConcept C41008148 @default.
- W3096450408 hasConcept C41895202 @default.
- W3096450408 hasConcept C45942800 @default.
- W3096450408 hasConcept C50644808 @default.
- W3096450408 hasConcept C83546350 @default.
- W3096450408 hasConcept C94625758 @default.
- W3096450408 hasConceptScore W3096450408C105795698 @default.
- W3096450408 hasConceptScore W3096450408C108583219 @default.
- W3096450408 hasConceptScore W3096450408C113174947 @default.
- W3096450408 hasConceptScore W3096450408C119857082 @default.
- W3096450408 hasConceptScore W3096450408C120665830 @default.
- W3096450408 hasConceptScore W3096450408C121332964 @default.
- W3096450408 hasConceptScore W3096450408C124101348 @default.
- W3096450408 hasConceptScore W3096450408C13280743 @default.
- W3096450408 hasConceptScore W3096450408C134306372 @default.
- W3096450408 hasConceptScore W3096450408C138885662 @default.
- W3096450408 hasConceptScore W3096450408C154945302 @default.
- W3096450408 hasConceptScore W3096450408C177264268 @default.
- W3096450408 hasConceptScore W3096450408C17744445 @default.
- W3096450408 hasConceptScore W3096450408C185798385 @default.
- W3096450408 hasConceptScore W3096450408C192209626 @default.