Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096465779> ?p ?o ?g. }
- W3096465779 endingPage "80" @default.
- W3096465779 startingPage "70" @default.
- W3096465779 abstract "ConspectusThe semiconductor-nanocrystal-sensitized, three-component upconversion system has made great strides over the past 5 years. The three components (i.e., triplet photosensitizer, mediator, and emitter) each play critical roles in determining the input and output photon energy and overall quantum efficiency (QE). The nanocrystal photosensitizer converts the absorbed photon into singlet excitons and then triplet excitons via intersystem crossing. The mediator accepts the triplet exciton via either direct Dexter-type triplet energy transfer (TET) or sequential charge transfer (CT) while extending the exciton lifetime. Through a second triplet energy-transfer step from the mediator to the emitter, the latter is populated in its lowest excited triplet state. Triplet–triplet annihilation (TTA) between two triplet emitters generates the emitter in its bright singlet state, which then emits the upconverted photon. Quantum dots (QD) have a tunable band gap, large extinction coefficient, and small singlet–triplet energy losses compared to metal–ligand charge-transfer complexes. This high triplet exciton yield makes QDs good candidates for photosensitizers. In terms of driving triplet energy transfer, the triplet energy of the mediator should be slightly lower than the triplet exciton energy of the QD sensitizer for a downhill energy landscape with minimal energy loss. The same energy cascade is also required for the transfer from the mediator to the emitter. Finally, the triplet energy of the emitter must be slightly larger than one-half of its singlet energy to ensure that TTA is exothermic. Optimization of the sensitizer, mediator, and emitter will lead to an increase in the anti-Stokes shift and the total quantum efficiency. Evaluating each individual step’s efficiency and kinetics is necessary for the understanding of the limiting factors in existing systems.This review summarizes chalcogenide QD-based photon upconversion systems with a focus on the mechanistic aspects of triplet energy transfer conducted by the Tang and Lian groups. Via time-resolved spectroscopy, the rates and major loss pathways associated with the two triplet energy-transfer steps were identified. The studies are focused on the near-infrared (NIR) to visible (VIS) PbS-tetracene-based systems as they allow systematic control of the QD, mediator, and emitter. Our results show that the mediator triplet state is mostly formed by direct TET from the QD and the transfer rate is influenced by the density of bound mediator molecules. Charge transfer, a loss pathway, does not produce triplet excitons and can be minimized by adding an inert shell to the QD. This transfer rate decreases exponentially with the distance between the QD and mediator molecule. The second TET rate was found to be much slower than the diffusion-limited collision rate, which results in the triplet lifetime of the mediator being the main factor limiting its efficiency. Finally, the total quantum efficiency can be calculated using these measured quantities including the TET1 and TET2 efficiencies. The agreement between calculated and measured quantum efficiencies suggests a firm understanding of QD-sensitized photon upconversion. We believe the above conclusions are general and should be widely applicable to similar systems, including singlet fission in hybrid organic–nanocrystal materials." @default.
- W3096465779 created "2020-11-09" @default.
- W3096465779 creator A5018465488 @default.
- W3096465779 creator A5051940447 @default.
- W3096465779 creator A5056292870 @default.
- W3096465779 creator A5067322077 @default.
- W3096465779 creator A5090810000 @default.
- W3096465779 date "2020-11-03" @default.
- W3096465779 modified "2023-10-14" @default.
- W3096465779 title "Mechanistic Understanding and Rational Design of Quantum Dot/Mediator Interfaces for Efficient Photon Upconversion" @default.
- W3096465779 cites W1969440555 @default.
- W3096465779 cites W1972077088 @default.
- W3096465779 cites W1973955207 @default.
- W3096465779 cites W1977183685 @default.
- W3096465779 cites W1977782752 @default.
- W3096465779 cites W1979571930 @default.
- W3096465779 cites W1992526463 @default.
- W3096465779 cites W2012933716 @default.
- W3096465779 cites W2013428315 @default.
- W3096465779 cites W2018744073 @default.
- W3096465779 cites W2029637177 @default.
- W3096465779 cites W2035579953 @default.
- W3096465779 cites W2053630528 @default.
- W3096465779 cites W2055390564 @default.
- W3096465779 cites W2088814506 @default.
- W3096465779 cites W2095387055 @default.
- W3096465779 cites W2102296744 @default.
- W3096465779 cites W2106190289 @default.
- W3096465779 cites W2115671169 @default.
- W3096465779 cites W2127096313 @default.
- W3096465779 cites W2136303879 @default.
- W3096465779 cites W2156496012 @default.
- W3096465779 cites W2172964917 @default.
- W3096465779 cites W2173517604 @default.
- W3096465779 cites W2203858440 @default.
- W3096465779 cites W2204662937 @default.
- W3096465779 cites W2291018944 @default.
- W3096465779 cites W2302418125 @default.
- W3096465779 cites W2304741218 @default.
- W3096465779 cites W2312395490 @default.
- W3096465779 cites W2321149562 @default.
- W3096465779 cites W2324634416 @default.
- W3096465779 cites W2326153055 @default.
- W3096465779 cites W2344268806 @default.
- W3096465779 cites W2347820525 @default.
- W3096465779 cites W2436042851 @default.
- W3096465779 cites W2470151293 @default.
- W3096465779 cites W2509244632 @default.
- W3096465779 cites W2543413148 @default.
- W3096465779 cites W2558143059 @default.
- W3096465779 cites W2559829282 @default.
- W3096465779 cites W2565599824 @default.
- W3096465779 cites W2595904566 @default.
- W3096465779 cites W2619176824 @default.
- W3096465779 cites W2620540770 @default.
- W3096465779 cites W2716445482 @default.
- W3096465779 cites W2739342652 @default.
- W3096465779 cites W2749158098 @default.
- W3096465779 cites W2763778916 @default.
- W3096465779 cites W2770770777 @default.
- W3096465779 cites W2784701076 @default.
- W3096465779 cites W2791994408 @default.
- W3096465779 cites W2792448353 @default.
- W3096465779 cites W2806865070 @default.
- W3096465779 cites W2884691261 @default.
- W3096465779 cites W2889776697 @default.
- W3096465779 cites W2894840322 @default.
- W3096465779 cites W2897141836 @default.
- W3096465779 cites W2910387602 @default.
- W3096465779 cites W2918754196 @default.
- W3096465779 cites W2945705112 @default.
- W3096465779 cites W2948505083 @default.
- W3096465779 cites W2952647582 @default.
- W3096465779 cites W2967309462 @default.
- W3096465779 cites W2967710024 @default.
- W3096465779 cites W2998325888 @default.
- W3096465779 cites W2999112093 @default.
- W3096465779 cites W3003131648 @default.
- W3096465779 cites W3007871174 @default.
- W3096465779 cites W3024696882 @default.
- W3096465779 cites W3032295996 @default.
- W3096465779 cites W3033989768 @default.
- W3096465779 cites W3042461572 @default.
- W3096465779 cites W3087442174 @default.
- W3096465779 cites W3088932462 @default.
- W3096465779 cites W4230170991 @default.
- W3096465779 doi "https://doi.org/10.1021/acs.accounts.0c00526" @default.
- W3096465779 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33141563" @default.
- W3096465779 hasPublicationYear "2020" @default.
- W3096465779 type Work @default.
- W3096465779 sameAs 3096465779 @default.
- W3096465779 citedByCount "28" @default.
- W3096465779 countsByYear W30964657792021 @default.
- W3096465779 countsByYear W30964657792022 @default.
- W3096465779 countsByYear W30964657792023 @default.
- W3096465779 crossrefType "journal-article" @default.
- W3096465779 hasAuthorship W3096465779A5018465488 @default.
- W3096465779 hasAuthorship W3096465779A5051940447 @default.