Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096475319> ?p ?o ?g. }
- W3096475319 endingPage "198356" @default.
- W3096475319 startingPage "198343" @default.
- W3096475319 abstract "This article presents an effective bearing fault diagnosis model based on multiple extraction and selection techniques. In multiple feature extraction, the discrete wavelet transform, envelope analysis, and fast Fourier transform are considered. While the combined binary particle swarm optimization with extended memory is focusing on feature selection. The current signals are analyzed by discrete wavelet transform. From there, the statistical features in the time and frequency domain are extracted by two techniques: envelope analysis, fast Fourier transform. Subsequently, the binary particle swarm optimization is combined with extended memory and two proposed position update mechanisms to eliminate redundant or irrelevant features to achieve the optimal feature subset. Besides, three classifiers including naïve Bayes, decision tree, and linear discriminant analysis are applied and compared to select the best model to detect the bearing fault." @default.
- W3096475319 created "2020-11-09" @default.
- W3096475319 creator A5036689222 @default.
- W3096475319 creator A5056092612 @default.
- W3096475319 date "2020-01-01" @default.
- W3096475319 modified "2023-10-15" @default.
- W3096475319 title "Intelligence Bearing Fault Diagnosis Model Using Multiple Feature Extraction and Binary Particle Swarm Optimization With Extended Memory" @default.
- W3096475319 cites W1444952417 @default.
- W3096475319 cites W1543715688 @default.
- W3096475319 cites W1545960569 @default.
- W3096475319 cites W1897892887 @default.
- W3096475319 cites W1968453726 @default.
- W3096475319 cites W1974225813 @default.
- W3096475319 cites W1974738620 @default.
- W3096475319 cites W1975843416 @default.
- W3096475319 cites W2025025456 @default.
- W3096475319 cites W2038402918 @default.
- W3096475319 cites W2047094503 @default.
- W3096475319 cites W2065322714 @default.
- W3096475319 cites W2071785476 @default.
- W3096475319 cites W2075524109 @default.
- W3096475319 cites W2098701484 @default.
- W3096475319 cites W2125213524 @default.
- W3096475319 cites W2130618678 @default.
- W3096475319 cites W2187537484 @default.
- W3096475319 cites W2342702938 @default.
- W3096475319 cites W2343420905 @default.
- W3096475319 cites W2344681634 @default.
- W3096475319 cites W2518115626 @default.
- W3096475319 cites W2606471037 @default.
- W3096475319 cites W2609399607 @default.
- W3096475319 cites W2612473079 @default.
- W3096475319 cites W2737927763 @default.
- W3096475319 cites W2767037054 @default.
- W3096475319 cites W2767479102 @default.
- W3096475319 cites W2886174418 @default.
- W3096475319 cites W2889083964 @default.
- W3096475319 cites W2890843359 @default.
- W3096475319 cites W2892079407 @default.
- W3096475319 cites W2895933188 @default.
- W3096475319 cites W2899564976 @default.
- W3096475319 cites W2915745584 @default.
- W3096475319 cites W2917908365 @default.
- W3096475319 cites W2932046728 @default.
- W3096475319 cites W2942060393 @default.
- W3096475319 cites W2942245950 @default.
- W3096475319 cites W2953775935 @default.
- W3096475319 cites W2964278775 @default.
- W3096475319 cites W2973093569 @default.
- W3096475319 cites W2979774998 @default.
- W3096475319 cites W2997897427 @default.
- W3096475319 cites W3008361547 @default.
- W3096475319 cites W4255143522 @default.
- W3096475319 doi "https://doi.org/10.1109/access.2020.3035081" @default.
- W3096475319 hasPublicationYear "2020" @default.
- W3096475319 type Work @default.
- W3096475319 sameAs 3096475319 @default.
- W3096475319 citedByCount "11" @default.
- W3096475319 countsByYear W30964753192021 @default.
- W3096475319 countsByYear W30964753192022 @default.
- W3096475319 countsByYear W30964753192023 @default.
- W3096475319 crossrefType "journal-article" @default.
- W3096475319 hasAuthorship W3096475319A5036689222 @default.
- W3096475319 hasAuthorship W3096475319A5056092612 @default.
- W3096475319 hasBestOaLocation W30964753191 @default.
- W3096475319 hasConcept C11413529 @default.
- W3096475319 hasConcept C127313418 @default.
- W3096475319 hasConcept C148483581 @default.
- W3096475319 hasConcept C153180895 @default.
- W3096475319 hasConcept C154945302 @default.
- W3096475319 hasConcept C165205528 @default.
- W3096475319 hasConcept C175551986 @default.
- W3096475319 hasConcept C196216189 @default.
- W3096475319 hasConcept C41008148 @default.
- W3096475319 hasConcept C46286280 @default.
- W3096475319 hasConcept C47432892 @default.
- W3096475319 hasConcept C52622490 @default.
- W3096475319 hasConcept C69738355 @default.
- W3096475319 hasConcept C85617194 @default.
- W3096475319 hasConceptScore W3096475319C11413529 @default.
- W3096475319 hasConceptScore W3096475319C127313418 @default.
- W3096475319 hasConceptScore W3096475319C148483581 @default.
- W3096475319 hasConceptScore W3096475319C153180895 @default.
- W3096475319 hasConceptScore W3096475319C154945302 @default.
- W3096475319 hasConceptScore W3096475319C165205528 @default.
- W3096475319 hasConceptScore W3096475319C175551986 @default.
- W3096475319 hasConceptScore W3096475319C196216189 @default.
- W3096475319 hasConceptScore W3096475319C41008148 @default.
- W3096475319 hasConceptScore W3096475319C46286280 @default.
- W3096475319 hasConceptScore W3096475319C47432892 @default.
- W3096475319 hasConceptScore W3096475319C52622490 @default.
- W3096475319 hasConceptScore W3096475319C69738355 @default.
- W3096475319 hasConceptScore W3096475319C85617194 @default.
- W3096475319 hasLocation W30964753191 @default.
- W3096475319 hasOpenAccess W3096475319 @default.
- W3096475319 hasPrimaryLocation W30964753191 @default.
- W3096475319 hasRelatedWork W1588899229 @default.
- W3096475319 hasRelatedWork W1918078477 @default.