Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096498983> ?p ?o ?g. }
- W3096498983 endingPage "344" @default.
- W3096498983 startingPage "328" @default.
- W3096498983 abstract "We propose a penalization algorithm for functional linear regression models, where the coefficient function β is shrunk towards a data-driven shape template γ. To the best of our knowledge, we employ the nonzero centered L2 penalty in a novel manner, as the center of the penalty γ is also optimized while being constrained to belong to a class of piecewise functions Γ, by restricting its basis expansion. This indirect penalization allows the user to control the overall shape of β, by imposing his prior knowledge on γ through the definition of Γ, without limiting the flexibility of the estimated model. In particular, we focus on the case where γ is expressed as a sum of q rectangles that are adaptively positioned with respect to the regression error. As the problem of finding the optimal knot placement of a piecewise function is nonconvex, we also propose a novel parametrization that allows to reduce the number of variables in the global optimization scheme, resulting in a fitting algorithm that alternates between approximating a suitable template and solving a convex ridge-like problem. The predictive power and interpretability of our method is shown on multiple simulations and two real world case studies." @default.
- W3096498983 created "2020-11-09" @default.
- W3096498983 creator A5004699501 @default.
- W3096498983 creator A5027625479 @default.
- W3096498983 date "2022-06-01" @default.
- W3096498983 modified "2023-09-26" @default.
- W3096498983 title "Ridge regression with adaptive additive rectangles and other piecewise functional templates" @default.
- W3096498983 cites W1515021623 @default.
- W3096498983 cites W1589848011 @default.
- W3096498983 cites W1595159159 @default.
- W3096498983 cites W1981317281 @default.
- W3096498983 cites W1987371344 @default.
- W3096498983 cites W1990385536 @default.
- W3096498983 cites W1990420052 @default.
- W3096498983 cites W1994309289 @default.
- W3096498983 cites W2002113995 @default.
- W3096498983 cites W2003127535 @default.
- W3096498983 cites W2025984697 @default.
- W3096498983 cites W2033250675 @default.
- W3096498983 cites W2045958904 @default.
- W3096498983 cites W2059173978 @default.
- W3096498983 cites W2067596735 @default.
- W3096498983 cites W2072081687 @default.
- W3096498983 cites W2072250033 @default.
- W3096498983 cites W2074682976 @default.
- W3096498983 cites W2089700840 @default.
- W3096498983 cites W2090382476 @default.
- W3096498983 cites W2091083714 @default.
- W3096498983 cites W2104844836 @default.
- W3096498983 cites W2105280352 @default.
- W3096498983 cites W2105428650 @default.
- W3096498983 cites W2114285038 @default.
- W3096498983 cites W2122825543 @default.
- W3096498983 cites W2135525924 @default.
- W3096498983 cites W2138019504 @default.
- W3096498983 cites W2140514146 @default.
- W3096498983 cites W2143220485 @default.
- W3096498983 cites W2144148350 @default.
- W3096498983 cites W2145642620 @default.
- W3096498983 cites W2151380144 @default.
- W3096498983 cites W2433467404 @default.
- W3096498983 cites W2937632374 @default.
- W3096498983 cites W2963521312 @default.
- W3096498983 cites W3098834468 @default.
- W3096498983 cites W3099936673 @default.
- W3096498983 cites W3100683829 @default.
- W3096498983 cites W3161317555 @default.
- W3096498983 cites W4233774682 @default.
- W3096498983 cites W4234698323 @default.
- W3096498983 cites W4251517737 @default.
- W3096498983 doi "https://doi.org/10.1016/j.neucom.2022.03.003" @default.
- W3096498983 hasPublicationYear "2022" @default.
- W3096498983 type Work @default.
- W3096498983 sameAs 3096498983 @default.
- W3096498983 citedByCount "1" @default.
- W3096498983 countsByYear W30964989832023 @default.
- W3096498983 crossrefType "journal-article" @default.
- W3096498983 hasAuthorship W3096498983A5004699501 @default.
- W3096498983 hasAuthorship W3096498983A5027625479 @default.
- W3096498983 hasBestOaLocation W30964989832 @default.
- W3096498983 hasConcept C105795698 @default.
- W3096498983 hasConcept C112680207 @default.
- W3096498983 hasConcept C11413529 @default.
- W3096498983 hasConcept C121332964 @default.
- W3096498983 hasConcept C126255220 @default.
- W3096498983 hasConcept C134306372 @default.
- W3096498983 hasConcept C14036430 @default.
- W3096498983 hasConcept C154945302 @default.
- W3096498983 hasConcept C157972887 @default.
- W3096498983 hasConcept C164660894 @default.
- W3096498983 hasConcept C202887219 @default.
- W3096498983 hasConcept C2524010 @default.
- W3096498983 hasConcept C2781067378 @default.
- W3096498983 hasConcept C33923547 @default.
- W3096498983 hasConcept C41008148 @default.
- W3096498983 hasConcept C6180225 @default.
- W3096498983 hasConcept C62520636 @default.
- W3096498983 hasConcept C74902906 @default.
- W3096498983 hasConcept C78458016 @default.
- W3096498983 hasConcept C83546350 @default.
- W3096498983 hasConcept C86803240 @default.
- W3096498983 hasConceptScore W3096498983C105795698 @default.
- W3096498983 hasConceptScore W3096498983C112680207 @default.
- W3096498983 hasConceptScore W3096498983C11413529 @default.
- W3096498983 hasConceptScore W3096498983C121332964 @default.
- W3096498983 hasConceptScore W3096498983C126255220 @default.
- W3096498983 hasConceptScore W3096498983C134306372 @default.
- W3096498983 hasConceptScore W3096498983C14036430 @default.
- W3096498983 hasConceptScore W3096498983C154945302 @default.
- W3096498983 hasConceptScore W3096498983C157972887 @default.
- W3096498983 hasConceptScore W3096498983C164660894 @default.
- W3096498983 hasConceptScore W3096498983C202887219 @default.
- W3096498983 hasConceptScore W3096498983C2524010 @default.
- W3096498983 hasConceptScore W3096498983C2781067378 @default.
- W3096498983 hasConceptScore W3096498983C33923547 @default.
- W3096498983 hasConceptScore W3096498983C41008148 @default.
- W3096498983 hasConceptScore W3096498983C6180225 @default.
- W3096498983 hasConceptScore W3096498983C62520636 @default.