Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096523314> ?p ?o ?g. }
- W3096523314 endingPage "106553" @default.
- W3096523314 startingPage "106553" @default.
- W3096523314 abstract "The rapid expansion of information science has caused the issue of “the curse of dimensionality”, which will negatively affect the performance of the machine learning model. Feature selection is typically considered as a pre-processing mechanism to find an optimal subset of features from a given set of all features in the data mining process. In this article, a novel Hyper Learning Binary Dragonfly Algorithm (HLBDA) is proposed as a wrapper-based method to find an optimal subset of features for a given classification problem. HLBDA is an enhanced version of the Binary Dragonfly Algorithm (BDA) in which a hyper learning strategy is used to assist the algorithm to escape local optima and improve searching behavior. The proposed HLBDA is compared with eight algorithms in the literature. Several assessment indicators are employed to evaluate and compare the effectiveness of these methods over twenty-one datasets from the University of California Irvine (UCI) repository and Arizona State University. Also, the proposed method is applied to a coronavirus disease (COVID-19) dataset. The results demonstrate the superiority of HLBDA in increasing classification accuracy and reducing the number of selected features.2" @default.
- W3096523314 created "2020-11-09" @default.
- W3096523314 creator A5007160230 @default.
- W3096523314 creator A5091500375 @default.
- W3096523314 date "2021-01-01" @default.
- W3096523314 modified "2023-10-18" @default.
- W3096523314 title "A Hyper Learning Binary Dragonfly Algorithm for Feature Selection: A COVID-19 Case Study" @default.
- W3096523314 cites W1102883814 @default.
- W3096523314 cites W1444952417 @default.
- W3096523314 cites W2005038754 @default.
- W3096523314 cites W2015832884 @default.
- W3096523314 cites W2020355555 @default.
- W3096523314 cites W2042253843 @default.
- W3096523314 cites W2061438946 @default.
- W3096523314 cites W2096166399 @default.
- W3096523314 cites W2096673585 @default.
- W3096523314 cites W2132795055 @default.
- W3096523314 cites W2155640378 @default.
- W3096523314 cites W2213289911 @default.
- W3096523314 cites W2224971544 @default.
- W3096523314 cites W2364240738 @default.
- W3096523314 cites W2461302873 @default.
- W3096523314 cites W2508160469 @default.
- W3096523314 cites W2528436910 @default.
- W3096523314 cites W2553852618 @default.
- W3096523314 cites W2594000120 @default.
- W3096523314 cites W2605861043 @default.
- W3096523314 cites W2606408464 @default.
- W3096523314 cites W2606879267 @default.
- W3096523314 cites W2610903531 @default.
- W3096523314 cites W2612473079 @default.
- W3096523314 cites W2625926059 @default.
- W3096523314 cites W2738730524 @default.
- W3096523314 cites W2767768852 @default.
- W3096523314 cites W2768772380 @default.
- W3096523314 cites W2782555828 @default.
- W3096523314 cites W2792304633 @default.
- W3096523314 cites W2799456480 @default.
- W3096523314 cites W2888602283 @default.
- W3096523314 cites W2889083964 @default.
- W3096523314 cites W2892079407 @default.
- W3096523314 cites W2897177582 @default.
- W3096523314 cites W2899901712 @default.
- W3096523314 cites W2902016849 @default.
- W3096523314 cites W2913388743 @default.
- W3096523314 cites W2924610876 @default.
- W3096523314 cites W2951508240 @default.
- W3096523314 cites W2965837582 @default.
- W3096523314 cites W2975524970 @default.
- W3096523314 cites W2984389231 @default.
- W3096523314 cites W2991234881 @default.
- W3096523314 cites W2997199851 @default.
- W3096523314 cites W3001675796 @default.
- W3096523314 cites W3007052537 @default.
- W3096523314 cites W3010181212 @default.
- W3096523314 cites W3014874376 @default.
- W3096523314 cites W3015038216 @default.
- W3096523314 cites W3016544281 @default.
- W3096523314 cites W3022714712 @default.
- W3096523314 cites W3023149700 @default.
- W3096523314 cites W3025520558 @default.
- W3096523314 cites W3025826476 @default.
- W3096523314 cites W3033057870 @default.
- W3096523314 cites W3036075185 @default.
- W3096523314 cites W3038780555 @default.
- W3096523314 cites W3040026758 @default.
- W3096523314 cites W3042045210 @default.
- W3096523314 cites W3042239862 @default.
- W3096523314 cites W3047947392 @default.
- W3096523314 cites W3083972167 @default.
- W3096523314 cites W3087000505 @default.
- W3096523314 cites W3104621635 @default.
- W3096523314 cites W3151491390 @default.
- W3096523314 cites W414544266 @default.
- W3096523314 cites W4250503569 @default.
- W3096523314 cites W631477483 @default.
- W3096523314 doi "https://doi.org/10.1016/j.knosys.2020.106553" @default.
- W3096523314 hasPublicationYear "2021" @default.
- W3096523314 type Work @default.
- W3096523314 sameAs 3096523314 @default.
- W3096523314 citedByCount "95" @default.
- W3096523314 countsByYear W30965233142020 @default.
- W3096523314 countsByYear W30965233142021 @default.
- W3096523314 countsByYear W30965233142022 @default.
- W3096523314 countsByYear W30965233142023 @default.
- W3096523314 crossrefType "journal-article" @default.
- W3096523314 hasAuthorship W3096523314A5007160230 @default.
- W3096523314 hasAuthorship W3096523314A5091500375 @default.
- W3096523314 hasBestOaLocation W30965233141 @default.
- W3096523314 hasConcept C111030470 @default.
- W3096523314 hasConcept C111919701 @default.
- W3096523314 hasConcept C11413529 @default.
- W3096523314 hasConcept C119857082 @default.
- W3096523314 hasConcept C12267149 @default.
- W3096523314 hasConcept C124101348 @default.
- W3096523314 hasConcept C138885662 @default.
- W3096523314 hasConcept C148483581 @default.
- W3096523314 hasConcept C154945302 @default.