Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096605775> ?p ?o ?g. }
- W3096605775 endingPage "207" @default.
- W3096605775 startingPage "190" @default.
- W3096605775 abstract "This paper proposes a straightforward, intuitive deep learning approach for (biomedical) image segmentation tasks. Different from the existing dense pixel classification methods, we develop a novel multi-level aggregation network to directly regress the coordinates of the boundary of instances in an end-to-end manner. The network seamlessly combines standard convolution neural network (CNN) with Attention Refinement Module (ARM) and Graph Convolution Network (GCN). By iteratively and hierarchically fusing the features across different layers of the CNN, our approach gains sufficient semantic information from the input image and pays special attention to the local boundaries with the help of ARM and GCN. In particular, thanks to the proposed aggregation GCN, our network benefits from direct feature learning of the instances’ boundary locations and the spatial information propagation across the image. Experiments on several challenging datasets demonstrate that our method achieves comparable results with state-of-the-art approaches but requires less inference time on the segmentation of fetal head in ultrasound images and of optic disc and optic cup in color fundus images." @default.
- W3096605775 created "2020-11-09" @default.
- W3096605775 creator A5002184499 @default.
- W3096605775 creator A5006828891 @default.
- W3096605775 creator A5007206027 @default.
- W3096605775 creator A5020085889 @default.
- W3096605775 creator A5057905491 @default.
- W3096605775 creator A5060523641 @default.
- W3096605775 creator A5081186911 @default.
- W3096605775 date "2020-01-01" @default.
- W3096605775 modified "2023-10-16" @default.
- W3096605775 title "Regression of Instance Boundary by Aggregated CNN and GCN" @default.
- W3096605775 cites W1536680647 @default.
- W3096605775 cites W1901129140 @default.
- W3096605775 cites W1903029394 @default.
- W3096605775 cites W1969496006 @default.
- W3096605775 cites W1997259062 @default.
- W3096605775 cites W2034786340 @default.
- W3096605775 cites W2102605133 @default.
- W3096605775 cites W2104095591 @default.
- W3096605775 cites W2109255472 @default.
- W3096605775 cites W2113325037 @default.
- W3096605775 cites W2194775991 @default.
- W3096605775 cites W2235901111 @default.
- W3096605775 cites W2412782625 @default.
- W3096605775 cites W2560023338 @default.
- W3096605775 cites W2742332513 @default.
- W3096605775 cites W2770121394 @default.
- W3096605775 cites W2784226479 @default.
- W3096605775 cites W2790291405 @default.
- W3096605775 cites W2883221003 @default.
- W3096605775 cites W2884436604 @default.
- W3096605775 cites W2886934227 @default.
- W3096605775 cites W2888303187 @default.
- W3096605775 cites W2895340641 @default.
- W3096605775 cites W2949763629 @default.
- W3096605775 cites W2953122916 @default.
- W3096605775 cites W2955058313 @default.
- W3096605775 cites W2963108253 @default.
- W3096605775 cites W2963150697 @default.
- W3096605775 cites W2963323244 @default.
- W3096605775 cites W2964309882 @default.
- W3096605775 cites W2971614929 @default.
- W3096605775 cites W2979448322 @default.
- W3096605775 cites W2980185997 @default.
- W3096605775 cites W2985492700 @default.
- W3096605775 cites W2990045899 @default.
- W3096605775 cites W2990361805 @default.
- W3096605775 cites W3034826836 @default.
- W3096605775 cites W3091501175 @default.
- W3096605775 cites W3098612954 @default.
- W3096605775 cites W3101507774 @default.
- W3096605775 doi "https://doi.org/10.1007/978-3-030-58598-3_12" @default.
- W3096605775 hasPublicationYear "2020" @default.
- W3096605775 type Work @default.
- W3096605775 sameAs 3096605775 @default.
- W3096605775 citedByCount "16" @default.
- W3096605775 countsByYear W30966057752021 @default.
- W3096605775 countsByYear W30966057752022 @default.
- W3096605775 countsByYear W30966057752023 @default.
- W3096605775 crossrefType "book-chapter" @default.
- W3096605775 hasAuthorship W3096605775A5002184499 @default.
- W3096605775 hasAuthorship W3096605775A5006828891 @default.
- W3096605775 hasAuthorship W3096605775A5007206027 @default.
- W3096605775 hasAuthorship W3096605775A5020085889 @default.
- W3096605775 hasAuthorship W3096605775A5057905491 @default.
- W3096605775 hasAuthorship W3096605775A5060523641 @default.
- W3096605775 hasAuthorship W3096605775A5081186911 @default.
- W3096605775 hasConcept C132525143 @default.
- W3096605775 hasConcept C134306372 @default.
- W3096605775 hasConcept C138885662 @default.
- W3096605775 hasConcept C153180895 @default.
- W3096605775 hasConcept C154945302 @default.
- W3096605775 hasConcept C2776214188 @default.
- W3096605775 hasConcept C2776401178 @default.
- W3096605775 hasConcept C31972630 @default.
- W3096605775 hasConcept C33923547 @default.
- W3096605775 hasConcept C41008148 @default.
- W3096605775 hasConcept C41895202 @default.
- W3096605775 hasConcept C45347329 @default.
- W3096605775 hasConcept C50644808 @default.
- W3096605775 hasConcept C62354387 @default.
- W3096605775 hasConcept C80444323 @default.
- W3096605775 hasConcept C81363708 @default.
- W3096605775 hasConcept C89600930 @default.
- W3096605775 hasConceptScore W3096605775C132525143 @default.
- W3096605775 hasConceptScore W3096605775C134306372 @default.
- W3096605775 hasConceptScore W3096605775C138885662 @default.
- W3096605775 hasConceptScore W3096605775C153180895 @default.
- W3096605775 hasConceptScore W3096605775C154945302 @default.
- W3096605775 hasConceptScore W3096605775C2776214188 @default.
- W3096605775 hasConceptScore W3096605775C2776401178 @default.
- W3096605775 hasConceptScore W3096605775C31972630 @default.
- W3096605775 hasConceptScore W3096605775C33923547 @default.
- W3096605775 hasConceptScore W3096605775C41008148 @default.
- W3096605775 hasConceptScore W3096605775C41895202 @default.
- W3096605775 hasConceptScore W3096605775C45347329 @default.
- W3096605775 hasConceptScore W3096605775C50644808 @default.