Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096606005> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3096606005 endingPage "941" @default.
- W3096606005 startingPage "930" @default.
- W3096606005 abstract "Background: Image retrieval has a significant role in present and upcoming usage for different image processing applications where images within a desired range of similarity are retrieved for a query image. Representation of image feature, accuracy of feature selection, optimal storage size of feature vector and efficient methods for obtaining features plays a vital role in Image retrieval, where features are represented based on the content of an image such as color, texture or shape. In this work an optimal feature vector based on control points of a Bezier curve is proposed which is computation and storage efficient. Aim: To develop an effective and storage, computation efficient framework model for retrieval and classification of plant leaves. Objective: The primary objective of this work is developing a new algorithm for control point extraction based on the global monitoring of edge region. This observation will bring a minimization in false feature extraction. Further, computing a sub clustering feature value in finer and details component to enhance the classification performance. Finally, developing a new search mechanism using inter and intra mapping of feature value in selecting optimal feature values in the estimation process. Methods: The work starts with the pre-processing stage that outputs the boundary coordinates of shape present in the input image. Gray scale input image is first converted into binary image using binarization then, the curvature coding is applied to extract the boundary of the leaf image. Gaussian Smoothening is then applied to the extracted boundary to remove the noise and false feature reduction. Further interpolation method is used to extract the control points of the boundary. From the extracted control points the Bezier curve points are estimated and then Fast Fourier Transform (FFT) is applied on the curve points to get the feature vector. Finally, the K-NN classifier is used to classify and retrieve the leaf images. Results: The performance of proposed approach is compared with the existing state-of-the-artmethods (Contour and Curve based) using the evaluation parameters viz. accuracy, sensitivity, specificity, recall rate, and processing time. Proposed method has high accuracy with acceptable specificity and sensitivity. Other methods fall short in comparison to proposed method. In case of sensitivity and specificity Contour method out performs proposed method. But in case accuracy and specificity proposed method outperforms the state-of-the-art methods. Conclusion: This work proposed a linear coding of Bezier curve control point computation for image retrieval. This approach minimizes the processing overhead and search delay by reducing feature vectors using a threshold-based selection approach. The proposed approach has an advantage of distortion suppression and dominant feature extraction simultaneously, minimizing the effort of additional filtration process. The accuracy of retrieval for the developed approach is observed to be improved as compared to the tangential Bezier curve method and conventional edge and contour-based coding. The approach signifies an advantage in low resource overhead in computing shape feature." @default.
- W3096606005 created "2020-11-09" @default.
- W3096606005 creator A5066679706 @default.
- W3096606005 creator A5075921352 @default.
- W3096606005 date "2020-11-05" @default.
- W3096606005 modified "2023-09-26" @default.
- W3096606005 title "Linear Bezier Curve Geometrical Feature Descriptor for Image Recognition" @default.
- W3096606005 cites W1780565974 @default.
- W3096606005 cites W2003515735 @default.
- W3096606005 cites W2042280378 @default.
- W3096606005 cites W2074566241 @default.
- W3096606005 cites W2081893716 @default.
- W3096606005 cites W2098439479 @default.
- W3096606005 cites W2108556791 @default.
- W3096606005 cites W2123602281 @default.
- W3096606005 cites W2129372062 @default.
- W3096606005 cites W2140793580 @default.
- W3096606005 cites W2143519535 @default.
- W3096606005 cites W2145313093 @default.
- W3096606005 cites W2150734399 @default.
- W3096606005 cites W2151238052 @default.
- W3096606005 cites W2188072181 @default.
- W3096606005 cites W2527644561 @default.
- W3096606005 cites W2612258907 @default.
- W3096606005 cites W2754659462 @default.
- W3096606005 cites W2792545292 @default.
- W3096606005 cites W2891459858 @default.
- W3096606005 cites W2902828907 @default.
- W3096606005 cites W2910522659 @default.
- W3096606005 cites W4253011043 @default.
- W3096606005 cites W4253251070 @default.
- W3096606005 cites W2049106855 @default.
- W3096606005 doi "https://doi.org/10.2174/2213275912666190617155154" @default.
- W3096606005 hasPublicationYear "2020" @default.
- W3096606005 type Work @default.
- W3096606005 sameAs 3096606005 @default.
- W3096606005 citedByCount "7" @default.
- W3096606005 countsByYear W30966060052019 @default.
- W3096606005 countsByYear W30966060052020 @default.
- W3096606005 countsByYear W30966060052021 @default.
- W3096606005 countsByYear W30966060052022 @default.
- W3096606005 countsByYear W30966060052023 @default.
- W3096606005 crossrefType "journal-article" @default.
- W3096606005 hasAuthorship W3096606005A5066679706 @default.
- W3096606005 hasAuthorship W3096606005A5075921352 @default.
- W3096606005 hasConcept C115961682 @default.
- W3096606005 hasConcept C126422989 @default.
- W3096606005 hasConcept C138885662 @default.
- W3096606005 hasConcept C153180895 @default.
- W3096606005 hasConcept C154945302 @default.
- W3096606005 hasConcept C193828747 @default.
- W3096606005 hasConcept C2776401178 @default.
- W3096606005 hasConcept C31972630 @default.
- W3096606005 hasConcept C33923547 @default.
- W3096606005 hasConcept C41008148 @default.
- W3096606005 hasConcept C41895202 @default.
- W3096606005 hasConcept C52622490 @default.
- W3096606005 hasConcept C83665646 @default.
- W3096606005 hasConcept C9417928 @default.
- W3096606005 hasConceptScore W3096606005C115961682 @default.
- W3096606005 hasConceptScore W3096606005C126422989 @default.
- W3096606005 hasConceptScore W3096606005C138885662 @default.
- W3096606005 hasConceptScore W3096606005C153180895 @default.
- W3096606005 hasConceptScore W3096606005C154945302 @default.
- W3096606005 hasConceptScore W3096606005C193828747 @default.
- W3096606005 hasConceptScore W3096606005C2776401178 @default.
- W3096606005 hasConceptScore W3096606005C31972630 @default.
- W3096606005 hasConceptScore W3096606005C33923547 @default.
- W3096606005 hasConceptScore W3096606005C41008148 @default.
- W3096606005 hasConceptScore W3096606005C41895202 @default.
- W3096606005 hasConceptScore W3096606005C52622490 @default.
- W3096606005 hasConceptScore W3096606005C83665646 @default.
- W3096606005 hasConceptScore W3096606005C9417928 @default.
- W3096606005 hasIssue "5" @default.
- W3096606005 hasLocation W30966060051 @default.
- W3096606005 hasOpenAccess W3096606005 @default.
- W3096606005 hasPrimaryLocation W30966060051 @default.
- W3096606005 hasRelatedWork W1977222486 @default.
- W3096606005 hasRelatedWork W2048505601 @default.
- W3096606005 hasRelatedWork W2078130820 @default.
- W3096606005 hasRelatedWork W2167293474 @default.
- W3096606005 hasRelatedWork W2331674254 @default.
- W3096606005 hasRelatedWork W2546942002 @default.
- W3096606005 hasRelatedWork W2772780115 @default.
- W3096606005 hasRelatedWork W2885565509 @default.
- W3096606005 hasRelatedWork W2979079341 @default.
- W3096606005 hasRelatedWork W3042897387 @default.
- W3096606005 hasVolume "13" @default.
- W3096606005 isParatext "false" @default.
- W3096606005 isRetracted "false" @default.
- W3096606005 magId "3096606005" @default.
- W3096606005 workType "article" @default.