Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096642460> ?p ?o ?g. }
- W3096642460 abstract "Abstract Background Random forest (RF) captures complex feature patterns that differentiate groups of samples and is rapidly being adopted in microbiome studies. However, a major challenge is the high dimensionality of microbiome datasets. They include thousands of species or molecular functions of particular biological interest. This high dimensionality significantly reduces the power of random forest approaches for identifying true differences. The widely used Boruta algorithm iteratively removes features that are proved by a statistical test to be less relevant than random probes. Result We developed a massively parallel forward variable selection algorithm and coupled it with the RF classifier to maximize the predictive performance. The forward variable selection algorithm adds new variable to a set of selected variables as far as the prespecified criterion of predictive power is improved. At each step, the parameters of random forest are optimized. We demonstrated the performance of the proposed approach, which we named RF-FVS, by analyzing two published datasets from large-scale case-control studies: (i) 16S rRNA gene amplicon data for Clostridioides difficile infection (CDI) and (ii) shotgun metagenomics data for human colorectal cancer (CRC). The RF-FVS approach further screened the variables that the Boruta algorithm left and improved the accuracy of the random forest classifier from 81% to 99.01% for CDI and from 75.14% to 90.17% for CRC. Conclusion Valid variable selection is essential for the analysis of high-dimensional microbiota data. By adopting the Boruta algorithm for pre-screening of the variables, our proposed RF-FVS approach improves the accuracy of random forest significantly with minimum increase of computational burden. The procedure can be used to identify the functional profiles that differentiate samples between different conditions." @default.
- W3096642460 created "2020-11-09" @default.
- W3096642460 creator A5043380578 @default.
- W3096642460 creator A5066174715 @default.
- W3096642460 date "2020-10-30" @default.
- W3096642460 modified "2023-10-01" @default.
- W3096642460 title "Forward variable selection improves the power of random forest for high- dimensional microbiome data" @default.
- W3096642460 cites W1520812622 @default.
- W3096642460 cites W1605688901 @default.
- W3096642460 cites W1811186957 @default.
- W3096642460 cites W1968105193 @default.
- W3096642460 cites W1978709058 @default.
- W3096642460 cites W1979012796 @default.
- W3096642460 cites W1984664179 @default.
- W3096642460 cites W2032230795 @default.
- W3096642460 cites W2034285706 @default.
- W3096642460 cites W2055992413 @default.
- W3096642460 cites W2065555275 @default.
- W3096642460 cites W2071841602 @default.
- W3096642460 cites W2086099578 @default.
- W3096642460 cites W2096436144 @default.
- W3096642460 cites W2099266276 @default.
- W3096642460 cites W2102636708 @default.
- W3096642460 cites W2107097628 @default.
- W3096642460 cites W2110300022 @default.
- W3096642460 cites W2113242816 @default.
- W3096642460 cites W2125031539 @default.
- W3096642460 cites W2129837723 @default.
- W3096642460 cites W2131186249 @default.
- W3096642460 cites W2131848047 @default.
- W3096642460 cites W2140679462 @default.
- W3096642460 cites W2156456403 @default.
- W3096642460 cites W2165067288 @default.
- W3096642460 cites W2171605634 @default.
- W3096642460 cites W2178425989 @default.
- W3096642460 cites W2223752691 @default.
- W3096642460 cites W2286606869 @default.
- W3096642460 cites W2314413252 @default.
- W3096642460 cites W2387768143 @default.
- W3096642460 cites W2415231490 @default.
- W3096642460 cites W2421561311 @default.
- W3096642460 cites W2426632426 @default.
- W3096642460 cites W2476662359 @default.
- W3096642460 cites W2769542288 @default.
- W3096642460 cites W2781633877 @default.
- W3096642460 cites W2789346262 @default.
- W3096642460 cites W2799338397 @default.
- W3096642460 cites W2803457956 @default.
- W3096642460 cites W2894132870 @default.
- W3096642460 cites W2896874217 @default.
- W3096642460 cites W2898174891 @default.
- W3096642460 cites W2898386254 @default.
- W3096642460 cites W2911964244 @default.
- W3096642460 cites W2920716817 @default.
- W3096642460 cites W2953583829 @default.
- W3096642460 cites W2963390885 @default.
- W3096642460 cites W2966515252 @default.
- W3096642460 cites W2989435115 @default.
- W3096642460 cites W3009578876 @default.
- W3096642460 cites W3031621681 @default.
- W3096642460 cites W3084216433 @default.
- W3096642460 doi "https://doi.org/10.1101/2020.10.29.361360" @default.
- W3096642460 hasPublicationYear "2020" @default.
- W3096642460 type Work @default.
- W3096642460 sameAs 3096642460 @default.
- W3096642460 citedByCount "1" @default.
- W3096642460 countsByYear W30966424602022 @default.
- W3096642460 crossrefType "posted-content" @default.
- W3096642460 hasAuthorship W3096642460A5043380578 @default.
- W3096642460 hasAuthorship W3096642460A5066174715 @default.
- W3096642460 hasBestOaLocation W30966424601 @default.
- W3096642460 hasConcept C105795698 @default.
- W3096642460 hasConcept C111030470 @default.
- W3096642460 hasConcept C11413529 @default.
- W3096642460 hasConcept C119857082 @default.
- W3096642460 hasConcept C122123141 @default.
- W3096642460 hasConcept C124101348 @default.
- W3096642460 hasConcept C143121216 @default.
- W3096642460 hasConcept C148483581 @default.
- W3096642460 hasConcept C153180895 @default.
- W3096642460 hasConcept C154945302 @default.
- W3096642460 hasConcept C169258074 @default.
- W3096642460 hasConcept C190944805 @default.
- W3096642460 hasConcept C33923547 @default.
- W3096642460 hasConcept C41008148 @default.
- W3096642460 hasConcept C60644358 @default.
- W3096642460 hasConcept C86803240 @default.
- W3096642460 hasConcept C91478284 @default.
- W3096642460 hasConcept C95623464 @default.
- W3096642460 hasConceptScore W3096642460C105795698 @default.
- W3096642460 hasConceptScore W3096642460C111030470 @default.
- W3096642460 hasConceptScore W3096642460C11413529 @default.
- W3096642460 hasConceptScore W3096642460C119857082 @default.
- W3096642460 hasConceptScore W3096642460C122123141 @default.
- W3096642460 hasConceptScore W3096642460C124101348 @default.
- W3096642460 hasConceptScore W3096642460C143121216 @default.
- W3096642460 hasConceptScore W3096642460C148483581 @default.
- W3096642460 hasConceptScore W3096642460C153180895 @default.
- W3096642460 hasConceptScore W3096642460C154945302 @default.
- W3096642460 hasConceptScore W3096642460C169258074 @default.