Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096669884> ?p ?o ?g. }
- W3096669884 endingPage "106577" @default.
- W3096669884 startingPage "106577" @default.
- W3096669884 abstract "This paper investigates how to add a limited number of Phasor Measurement Units (PMUs) to the existing monitoring system so as to improve the estimation accuracy further. The existing methods are usually based on Gaussian noise assumption and the weighted least squares (WLS) estimator is taken into account. However, the Gaussian noise assumption is not always true in reality and the WLS is non-robust in this case. This paper proposes a new optimal PMU placement approach where the distribution of measurement noise can be non-Gaussian or Gaussian and many robust estimators such as the maximum likelihood estimator, Multiple-Segment, Quadratic-Linear, Square-Root and Schweppe-Huber Generalized-M estimator are considered. Based on the new Gain matrix obtained from the influence function approximation, the D-optimal and E-optimal experiment criterions are exploited in the optimal PMU placement problem. A convex relaxation in conjunction with an optimization improvement method based on the Fedorov exchange algorithm is utilized to solve the optimizing problem. Simulations on the IEEE 57-bus system and the Polish 2383-bus system are carried out to evaluate the effective performance of the proposed approach." @default.
- W3096669884 created "2020-11-09" @default.
- W3096669884 creator A5016859776 @default.
- W3096669884 creator A5027915443 @default.
- W3096669884 creator A5038591382 @default.
- W3096669884 creator A5040457529 @default.
- W3096669884 creator A5070572904 @default.
- W3096669884 creator A5075392699 @default.
- W3096669884 date "2021-03-01" @default.
- W3096669884 modified "2023-09-27" @default.
- W3096669884 title "Optimal PMU placement approach for power systems considering non-Gaussian measurement noise statistics" @default.
- W3096669884 cites W1967643758 @default.
- W3096669884 cites W1974823971 @default.
- W3096669884 cites W1985336094 @default.
- W3096669884 cites W1995343075 @default.
- W3096669884 cites W2032960059 @default.
- W3096669884 cites W2090883575 @default.
- W3096669884 cites W2098040975 @default.
- W3096669884 cites W2104869985 @default.
- W3096669884 cites W2113642685 @default.
- W3096669884 cites W2123878675 @default.
- W3096669884 cites W2133728325 @default.
- W3096669884 cites W2169207653 @default.
- W3096669884 cites W2230864361 @default.
- W3096669884 cites W2235831852 @default.
- W3096669884 cites W2314141592 @default.
- W3096669884 cites W2317330621 @default.
- W3096669884 cites W2503603971 @default.
- W3096669884 cites W2542813941 @default.
- W3096669884 cites W2587433340 @default.
- W3096669884 cites W2590199281 @default.
- W3096669884 cites W2610139673 @default.
- W3096669884 cites W2621679617 @default.
- W3096669884 cites W2765273006 @default.
- W3096669884 cites W2769181489 @default.
- W3096669884 cites W2883096224 @default.
- W3096669884 cites W2887434321 @default.
- W3096669884 cites W2891009036 @default.
- W3096669884 cites W2894711196 @default.
- W3096669884 cites W2897016432 @default.
- W3096669884 cites W2908897873 @default.
- W3096669884 cites W2910731002 @default.
- W3096669884 cites W2920030711 @default.
- W3096669884 cites W2946102711 @default.
- W3096669884 cites W2965926346 @default.
- W3096669884 cites W2991265516 @default.
- W3096669884 cites W3000546688 @default.
- W3096669884 cites W3015084552 @default.
- W3096669884 doi "https://doi.org/10.1016/j.ijepes.2020.106577" @default.
- W3096669884 hasPublicationYear "2021" @default.
- W3096669884 type Work @default.
- W3096669884 sameAs 3096669884 @default.
- W3096669884 citedByCount "9" @default.
- W3096669884 countsByYear W30966698842021 @default.
- W3096669884 countsByYear W30966698842022 @default.
- W3096669884 countsByYear W30966698842023 @default.
- W3096669884 crossrefType "journal-article" @default.
- W3096669884 hasAuthorship W3096669884A5016859776 @default.
- W3096669884 hasAuthorship W3096669884A5027915443 @default.
- W3096669884 hasAuthorship W3096669884A5038591382 @default.
- W3096669884 hasAuthorship W3096669884A5040457529 @default.
- W3096669884 hasAuthorship W3096669884A5070572904 @default.
- W3096669884 hasAuthorship W3096669884A5075392699 @default.
- W3096669884 hasConcept C105795698 @default.
- W3096669884 hasConcept C11413529 @default.
- W3096669884 hasConcept C115961682 @default.
- W3096669884 hasConcept C121332964 @default.
- W3096669884 hasConcept C126255220 @default.
- W3096669884 hasConcept C129844170 @default.
- W3096669884 hasConcept C154945302 @default.
- W3096669884 hasConcept C163258240 @default.
- W3096669884 hasConcept C163294075 @default.
- W3096669884 hasConcept C163716315 @default.
- W3096669884 hasConcept C176605952 @default.
- W3096669884 hasConcept C185429906 @default.
- W3096669884 hasConcept C2524010 @default.
- W3096669884 hasConcept C2775924081 @default.
- W3096669884 hasConcept C2778229166 @default.
- W3096669884 hasConcept C29265498 @default.
- W3096669884 hasConcept C33923547 @default.
- W3096669884 hasConcept C41008148 @default.
- W3096669884 hasConcept C4199805 @default.
- W3096669884 hasConcept C47446073 @default.
- W3096669884 hasConcept C62520636 @default.
- W3096669884 hasConcept C89227174 @default.
- W3096669884 hasConcept C99498987 @default.
- W3096669884 hasConceptScore W3096669884C105795698 @default.
- W3096669884 hasConceptScore W3096669884C11413529 @default.
- W3096669884 hasConceptScore W3096669884C115961682 @default.
- W3096669884 hasConceptScore W3096669884C121332964 @default.
- W3096669884 hasConceptScore W3096669884C126255220 @default.
- W3096669884 hasConceptScore W3096669884C129844170 @default.
- W3096669884 hasConceptScore W3096669884C154945302 @default.
- W3096669884 hasConceptScore W3096669884C163258240 @default.
- W3096669884 hasConceptScore W3096669884C163294075 @default.
- W3096669884 hasConceptScore W3096669884C163716315 @default.
- W3096669884 hasConceptScore W3096669884C176605952 @default.
- W3096669884 hasConceptScore W3096669884C185429906 @default.