Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096682008> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3096682008 abstract "Abstract Interpretation of geological facies such as lithofacies and depositional facies is a process of classifying high dimensional data into groups. Conventional Machine Learning methods such as random forest, support vector machine, back progradation neutral network have been tested throughout in lithofacies classification (Hall and Hall, 2017). However, poor performances were observed in depositional facies prediction as the later requires integration of more complex data such as depositional facies interpretation in core, wireline, biostratigraphy in the context of depositional units, not sample by sample data points. The limitation of data-driven classifier and the value of geological derived features in facies classifications was discussed in the literature (Halotel et al., 2020). In order to improve the classifier performance, a novel hybrid approach was implemented, which involved an automatic depositional unit breakdown, well log feature extractions, machine learning core-log models and a rule based expert system. In this paper, an Artificial Intelligence (AI) system was employed that integrates machine learning with an expert system to predict depositional facies and tested its reliability versus facies interpretations made from conventional cores in test wells. In the prediction method, data samples were depositional units derived from Gamma Ray value changes that were integrated with core and biostratigraphic data. These were then passed through an expert system containing a set of fuzzy rules to yield final probabilities for each of the 35 depositional facies stored in a library. The AI system helped to produce multiple scenarios with qualify uncertainty, consistent depositional facies classification based on depositional facies observed in core, biostratigraphy and wireline logs. Depositional facies in the aforementioned reservoir were predicted with the AI system for the cored intervals in X1 and X2 using only well logs and biostratigraphic data as input. The predicted facies were in strong agreement with the core interpretations as both methods concluded that the depositional environment was a marine delta. The AI prediction assigned a higher proportion of the X2 succession to the Marine Delta depositional facies than it did for the X1 core; the facies difference in the two wells was subtle and not recognized by the core interpretation. Seismic attributes suggested that the more variable facies succession that AI predicted for X1 may have geological significance. The AI tool generated reliable and consistent results and appeared capable of reducing the uncertainties of predicting facies distribution and the subsequent development of conceptual depositional models." @default.
- W3096682008 created "2020-11-09" @default.
- W3096682008 creator A5021777250 @default.
- W3096682008 creator A5024620862 @default.
- W3096682008 creator A5037081315 @default.
- W3096682008 creator A5042139471 @default.
- W3096682008 creator A5085000592 @default.
- W3096682008 date "2020-10-27" @default.
- W3096682008 modified "2023-09-27" @default.
- W3096682008 title "Depositional Facies Prediction Using Artificial Intelligence to Improve Reservoir Characterization in a Mature Field of Nam Con Son Basin, Offshore Vietnam" @default.
- W3096682008 cites W2529108047 @default.
- W3096682008 cites W2551549415 @default.
- W3096682008 cites W2594681445 @default.
- W3096682008 cites W2747502838 @default.
- W3096682008 cites W2964505768 @default.
- W3096682008 cites W2985504740 @default.
- W3096682008 doi "https://doi.org/10.4043/30086-ms" @default.
- W3096682008 hasPublicationYear "2020" @default.
- W3096682008 type Work @default.
- W3096682008 sameAs 3096682008 @default.
- W3096682008 citedByCount "2" @default.
- W3096682008 countsByYear W30966820082021 @default.
- W3096682008 countsByYear W30966820082022 @default.
- W3096682008 crossrefType "proceedings-article" @default.
- W3096682008 hasAuthorship W3096682008A5021777250 @default.
- W3096682008 hasAuthorship W3096682008A5024620862 @default.
- W3096682008 hasAuthorship W3096682008A5037081315 @default.
- W3096682008 hasAuthorship W3096682008A5042139471 @default.
- W3096682008 hasAuthorship W3096682008A5085000592 @default.
- W3096682008 hasConcept C109007969 @default.
- W3096682008 hasConcept C119857082 @default.
- W3096682008 hasConcept C126753816 @default.
- W3096682008 hasConcept C127313418 @default.
- W3096682008 hasConcept C14641988 @default.
- W3096682008 hasConcept C146588470 @default.
- W3096682008 hasConcept C151730666 @default.
- W3096682008 hasConcept C154945302 @default.
- W3096682008 hasConcept C161028810 @default.
- W3096682008 hasConcept C16565575 @default.
- W3096682008 hasConcept C187320778 @default.
- W3096682008 hasConcept C2776867696 @default.
- W3096682008 hasConcept C41008148 @default.
- W3096682008 hasConcept C77928131 @default.
- W3096682008 hasConceptScore W3096682008C109007969 @default.
- W3096682008 hasConceptScore W3096682008C119857082 @default.
- W3096682008 hasConceptScore W3096682008C126753816 @default.
- W3096682008 hasConceptScore W3096682008C127313418 @default.
- W3096682008 hasConceptScore W3096682008C14641988 @default.
- W3096682008 hasConceptScore W3096682008C146588470 @default.
- W3096682008 hasConceptScore W3096682008C151730666 @default.
- W3096682008 hasConceptScore W3096682008C154945302 @default.
- W3096682008 hasConceptScore W3096682008C161028810 @default.
- W3096682008 hasConceptScore W3096682008C16565575 @default.
- W3096682008 hasConceptScore W3096682008C187320778 @default.
- W3096682008 hasConceptScore W3096682008C2776867696 @default.
- W3096682008 hasConceptScore W3096682008C41008148 @default.
- W3096682008 hasConceptScore W3096682008C77928131 @default.
- W3096682008 hasLocation W30966820081 @default.
- W3096682008 hasOpenAccess W3096682008 @default.
- W3096682008 hasPrimaryLocation W30966820081 @default.
- W3096682008 hasRelatedWork W1570497625 @default.
- W3096682008 hasRelatedWork W1937777925 @default.
- W3096682008 hasRelatedWork W2068450203 @default.
- W3096682008 hasRelatedWork W2093622664 @default.
- W3096682008 hasRelatedWork W2098066131 @default.
- W3096682008 hasRelatedWork W2772056227 @default.
- W3096682008 hasRelatedWork W2953396682 @default.
- W3096682008 hasRelatedWork W3147413900 @default.
- W3096682008 hasRelatedWork W3167962451 @default.
- W3096682008 hasRelatedWork W35547150 @default.
- W3096682008 isParatext "false" @default.
- W3096682008 isRetracted "false" @default.
- W3096682008 magId "3096682008" @default.
- W3096682008 workType "article" @default.