Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096720487> ?p ?o ?g. }
- W3096720487 endingPage "665" @default.
- W3096720487 startingPage "665" @default.
- W3096720487 abstract "Spatio-temporal fusion algorithms dramatically enhance the application of the Landsat time series. However, each spatio-temporal fusion algorithm has its pros and cons of heterogeneous land cover performance, the minimal number of input image pairs, and its efficiency. This study aimed to answer: (1) how to determine the adaptability of the spatio-temporal fusion algorithm for predicting images in prediction date and (2) whether the Landsat normalized difference vegetation index (NDVI) time series would benefit from the interpolation with images fused from multiple spatio-temporal fusion algorithms. Thus, we supposed a linear relationship existed between the fusion accuracy and spatial and temporal variance. Taking the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and the Enhanced STARFM (ESTARFM) as basic algorithms, a framework was designed to screen a spatio-temporal fusion algorithm for the Landsat NDVI time series construction. The screening rule was designed by fitting the linear relationship between the spatial and temporal variance and fusion algorithm accuracy, and then the fitted relationship was combined with the graded accuracy selecting rule (R2) to select the fusion algorithm. The results indicated that the constructed Landsat NDVI time series by this paper proposed framework exhibited the highest overall accuracy (88.18%), and lowest omission (1.82%) and commission errors (10.00%) in land cover change detection compared with the moderate resolution imaging spectroradiometer (MODIS) NDVI time series and the NDVI time series constructed by a single STARFM or ESTARFM. Phenological stability analysis demonstrated that the Landsat NDVI time series established by multiple spatio-temporal algorithms could effectively avoid phenological fluctuations in the time series constructed by a single fusion algorithm. We believe that this framework can help improve the quality of the Landsat NDVI time series and fulfill the gap between near real-time environmental monitoring mandates and data-scarcity reality." @default.
- W3096720487 created "2020-11-09" @default.
- W3096720487 creator A5039914732 @default.
- W3096720487 creator A5055289986 @default.
- W3096720487 creator A5061039424 @default.
- W3096720487 creator A5080883951 @default.
- W3096720487 creator A5081705650 @default.
- W3096720487 date "2020-11-04" @default.
- W3096720487 modified "2023-10-16" @default.
- W3096720487 title "A Framework of Spatio-Temporal Fusion Algorithm Selection for Landsat NDVI Time Series Construction" @default.
- W3096720487 cites W1614886892 @default.
- W3096720487 cites W1656677981 @default.
- W3096720487 cites W1966205003 @default.
- W3096720487 cites W1966711117 @default.
- W3096720487 cites W1970515153 @default.
- W3096720487 cites W1982121855 @default.
- W3096720487 cites W1982956952 @default.
- W3096720487 cites W1984289242 @default.
- W3096720487 cites W1987927366 @default.
- W3096720487 cites W2003224325 @default.
- W3096720487 cites W2011787232 @default.
- W3096720487 cites W2013140666 @default.
- W3096720487 cites W2017193019 @default.
- W3096720487 cites W2018636632 @default.
- W3096720487 cites W2027690707 @default.
- W3096720487 cites W2028240797 @default.
- W3096720487 cites W2037364101 @default.
- W3096720487 cites W2050225888 @default.
- W3096720487 cites W2051159954 @default.
- W3096720487 cites W2056811372 @default.
- W3096720487 cites W2061929982 @default.
- W3096720487 cites W2062343124 @default.
- W3096720487 cites W2065665222 @default.
- W3096720487 cites W2069988625 @default.
- W3096720487 cites W2077578806 @default.
- W3096720487 cites W2079740553 @default.
- W3096720487 cites W2079921704 @default.
- W3096720487 cites W2082263501 @default.
- W3096720487 cites W2085793179 @default.
- W3096720487 cites W2088603520 @default.
- W3096720487 cites W2092141993 @default.
- W3096720487 cites W2113503197 @default.
- W3096720487 cites W2133665775 @default.
- W3096720487 cites W2151456308 @default.
- W3096720487 cites W2159269332 @default.
- W3096720487 cites W2161336494 @default.
- W3096720487 cites W2170787371 @default.
- W3096720487 cites W2200350976 @default.
- W3096720487 cites W2307094448 @default.
- W3096720487 cites W2327472974 @default.
- W3096720487 cites W2344328155 @default.
- W3096720487 cites W2404325781 @default.
- W3096720487 cites W2408286848 @default.
- W3096720487 cites W2489666958 @default.
- W3096720487 cites W2554449399 @default.
- W3096720487 cites W2556291887 @default.
- W3096720487 cites W2562900277 @default.
- W3096720487 cites W2601081224 @default.
- W3096720487 cites W2725897987 @default.
- W3096720487 cites W2774052553 @default.
- W3096720487 cites W2793445582 @default.
- W3096720487 cites W2804526550 @default.
- W3096720487 cites W2889506869 @default.
- W3096720487 cites W2904870059 @default.
- W3096720487 cites W2913910070 @default.
- W3096720487 cites W2939570633 @default.
- W3096720487 cites W3007850788 @default.
- W3096720487 cites W3008666314 @default.
- W3096720487 cites W3037983056 @default.
- W3096720487 cites W3046321365 @default.
- W3096720487 cites W3048975096 @default.
- W3096720487 cites W786010200 @default.
- W3096720487 doi "https://doi.org/10.3390/ijgi9110665" @default.
- W3096720487 hasPublicationYear "2020" @default.
- W3096720487 type Work @default.
- W3096720487 sameAs 3096720487 @default.
- W3096720487 citedByCount "11" @default.
- W3096720487 countsByYear W30967204872020 @default.
- W3096720487 countsByYear W30967204872021 @default.
- W3096720487 countsByYear W30967204872022 @default.
- W3096720487 countsByYear W30967204872023 @default.
- W3096720487 crossrefType "journal-article" @default.
- W3096720487 hasAuthorship W3096720487A5039914732 @default.
- W3096720487 hasAuthorship W3096720487A5055289986 @default.
- W3096720487 hasAuthorship W3096720487A5061039424 @default.
- W3096720487 hasAuthorship W3096720487A5080883951 @default.
- W3096720487 hasAuthorship W3096720487A5081705650 @default.
- W3096720487 hasBestOaLocation W30967204871 @default.
- W3096720487 hasConcept C111368507 @default.
- W3096720487 hasConcept C11413529 @default.
- W3096720487 hasConcept C115961682 @default.
- W3096720487 hasConcept C119666444 @default.
- W3096720487 hasConcept C119857082 @default.
- W3096720487 hasConcept C121332964 @default.
- W3096720487 hasConcept C127313418 @default.
- W3096720487 hasConcept C127413603 @default.
- W3096720487 hasConcept C132651083 @default.
- W3096720487 hasConcept C138885662 @default.