Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096739239> ?p ?o ?g. }
- W3096739239 endingPage "6251" @default.
- W3096739239 startingPage "6251" @default.
- W3096739239 abstract "The main source of delays in public transport systems (buses, trams, metros, railways) takes place in their stations. For example, a public transport vehicle can travel at 60 km per hour between stations, but its commercial speed (average en-route speed, including any intermediate delay) does not reach more than half of that value. Therefore, the problem that public transport operators must solve is how to reduce the delay in stations. From the perspective of transport engineering, there are several ways to approach this issue, from the design of infrastructure and vehicles to passenger traffic management. The tools normally available to traffic engineers are analytical models, microscopic traffic simulation, and, ultimately, real-scale laboratory experiments. In any case, the data that are required are number of passengers that get on and off from the vehicles, as well as the number of passengers waiting on platforms. Traditionally, such data has been collected manually by field counts or through videos that are then processed by hand. On the other hand, public transport networks, specially metropolitan railways, have an extensive monitoring infrastructure based on standard video cameras. Traditionally, these are observed manually or with very basic signal processing support, so there is significant scope for improving data capture and for automating the analysis of site usage, safety, and surveillance. This article shows a way of collecting and analyzing the data needed to feed both traffic models and analyze laboratory experimentation, exploiting recent intelligent sensing approaches. The paper presents a new public video dataset gathered using real-scale laboratory recordings. Part of this dataset has been annotated by hand, marking up head locations to provide a ground-truth on which to train and evaluate deep learning detection and tracking algorithms. Tracking outputs are then used to count people getting on and off, achieving a mean accuracy of 92% with less than 0.15% standard deviation on 322 mostly unseen dataset video sequences." @default.
- W3096739239 created "2020-11-09" @default.
- W3096739239 creator A5000226831 @default.
- W3096739239 creator A5000727273 @default.
- W3096739239 creator A5047254326 @default.
- W3096739239 creator A5054461332 @default.
- W3096739239 date "2020-11-02" @default.
- W3096739239 modified "2023-10-17" @default.
- W3096739239 title "Detecting, Tracking and Counting People Getting On/Off a Metropolitan Train Using a Standard Video Camera" @default.
- W3096739239 cites W1650122911 @default.
- W3096739239 cites W1861492603 @default.
- W3096739239 cites W1995903777 @default.
- W3096739239 cites W2003663616 @default.
- W3096739239 cites W2018876607 @default.
- W3096739239 cites W2026499422 @default.
- W3096739239 cites W2027734244 @default.
- W3096739239 cites W2028880308 @default.
- W3096739239 cites W2031489346 @default.
- W3096739239 cites W2056568526 @default.
- W3096739239 cites W2075664541 @default.
- W3096739239 cites W2076269884 @default.
- W3096739239 cites W2082716591 @default.
- W3096739239 cites W2084989099 @default.
- W3096739239 cites W2099355420 @default.
- W3096739239 cites W2102605133 @default.
- W3096739239 cites W2102625004 @default.
- W3096739239 cites W2106909224 @default.
- W3096739239 cites W2106962004 @default.
- W3096739239 cites W2115669554 @default.
- W3096739239 cites W2120815373 @default.
- W3096739239 cites W2124211486 @default.
- W3096739239 cites W2124781496 @default.
- W3096739239 cites W2134471003 @default.
- W3096739239 cites W2154889144 @default.
- W3096739239 cites W2161969291 @default.
- W3096739239 cites W2169566837 @default.
- W3096739239 cites W2170853774 @default.
- W3096739239 cites W2225887246 @default.
- W3096739239 cites W2252355370 @default.
- W3096739239 cites W2261988451 @default.
- W3096739239 cites W2343175577 @default.
- W3096739239 cites W2343187456 @default.
- W3096739239 cites W2400377208 @default.
- W3096739239 cites W2550448235 @default.
- W3096739239 cites W2603203130 @default.
- W3096739239 cites W2767302379 @default.
- W3096739239 cites W2791697444 @default.
- W3096739239 cites W2915025957 @default.
- W3096739239 cites W2919011445 @default.
- W3096739239 cites W2962376729 @default.
- W3096739239 cites W2963037989 @default.
- W3096739239 cites W2963456480 @default.
- W3096739239 cites W2966535964 @default.
- W3096739239 cites W2982593143 @default.
- W3096739239 cites W2985210540 @default.
- W3096739239 cites W2989604896 @default.
- W3096739239 cites W2991384465 @default.
- W3096739239 cites W2992454442 @default.
- W3096739239 cites W2999543550 @default.
- W3096739239 cites W3003063065 @default.
- W3096739239 cites W3023726235 @default.
- W3096739239 cites W3028733042 @default.
- W3096739239 cites W3034897322 @default.
- W3096739239 cites W4248936881 @default.
- W3096739239 doi "https://doi.org/10.3390/s20216251" @default.
- W3096739239 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7662571" @default.
- W3096739239 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33147784" @default.
- W3096739239 hasPublicationYear "2020" @default.
- W3096739239 type Work @default.
- W3096739239 sameAs 3096739239 @default.
- W3096739239 citedByCount "18" @default.
- W3096739239 countsByYear W30967392392021 @default.
- W3096739239 countsByYear W30967392392022 @default.
- W3096739239 countsByYear W30967392392023 @default.
- W3096739239 crossrefType "journal-article" @default.
- W3096739239 hasAuthorship W3096739239A5000226831 @default.
- W3096739239 hasAuthorship W3096739239A5000727273 @default.
- W3096739239 hasAuthorship W3096739239A5047254326 @default.
- W3096739239 hasAuthorship W3096739239A5054461332 @default.
- W3096739239 hasBestOaLocation W30967392391 @default.
- W3096739239 hasConcept C121332964 @default.
- W3096739239 hasConcept C127413603 @default.
- W3096739239 hasConcept C142724271 @default.
- W3096739239 hasConcept C158739034 @default.
- W3096739239 hasConcept C199360897 @default.
- W3096739239 hasConcept C22212356 @default.
- W3096739239 hasConcept C26517878 @default.
- W3096739239 hasConcept C2778012447 @default.
- W3096739239 hasConcept C2778755073 @default.
- W3096739239 hasConcept C38652104 @default.
- W3096739239 hasConcept C41008148 @default.
- W3096739239 hasConcept C44154836 @default.
- W3096739239 hasConcept C539828613 @default.
- W3096739239 hasConcept C62520636 @default.
- W3096739239 hasConcept C71924100 @default.
- W3096739239 hasConcept C76155785 @default.
- W3096739239 hasConcept C79403827 @default.
- W3096739239 hasConceptScore W3096739239C121332964 @default.