Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096749317> ?p ?o ?g. }
- W3096749317 endingPage "108675" @default.
- W3096749317 startingPage "108675" @default.
- W3096749317 abstract "In the Vehicular Ad-hoc Networks, an enormous number of Location-based Services could be given to clients as per their development characteristics. Then, protection might be split when clients distribute certain vehicular trajectories information to the servers. Location-based Services collect large amounts of the Vehicular Ad-hoc Networks trajectories data, and if this data is released directly without any processing, it leaks the vehicles privacy. Nowadays, many scientists have encouraged different technologies to protect privacy, but how to use it rationally for Location-based Service is also a challenge. This path is continuous in time and space. Still, mostly the existing approaches only acknowledge a single position of the moving object at a particular time. They do not find the entire path, which may destroy the integrity of the space–time of the trajectory of the vehicle. However, existing work cannot fully guarantee the privacy of the vehicle’s trajectories because randomly selected noise does not contribute to the dissemination of meaningful path data, and people must hide access to sensitive areas. In this paper, a Differential Privacy and generalization based anonymization approach is proposed to protect the privacy of the sensitive vehicular trajectories. Privacy analysis shows that this scheme is achieved the Differential Privacy. The experiments with vehicular trajectories data shows that the system has good data feasibility and can be applied on large vehicular trajectories datasets. In the results firstly, to compute the Dump Ratio and CAVG experiment to check the efficiency of the method. Results shows the histogram of DPPS, PPDP and NTDP and the proposed strategy on the four datasets, where DPPS, PPDP and NTDP have lower accessibility contrasted with the proposed technique. The accuracy, precision and the recall rate of proposed method is also achieved. The impact of privacy budget values on Relative Average Error, Mean Absolute Error, Standard Deviation are also examined." @default.
- W3096749317 created "2020-11-09" @default.
- W3096749317 creator A5000355426 @default.
- W3096749317 creator A5000976231 @default.
- W3096749317 creator A5003398556 @default.
- W3096749317 creator A5023394727 @default.
- W3096749317 creator A5043347603 @default.
- W3096749317 date "2021-03-01" @default.
- W3096749317 modified "2023-09-25" @default.
- W3096749317 title "Privacy preserving and data publication for vehicular trajectories with differential privacy" @default.
- W3096749317 cites W1538497504 @default.
- W3096749317 cites W1964939486 @default.
- W3096749317 cites W1969152264 @default.
- W3096749317 cites W1993157943 @default.
- W3096749317 cites W1995277532 @default.
- W3096749317 cites W2001347093 @default.
- W3096749317 cites W2030496847 @default.
- W3096749317 cites W2035311901 @default.
- W3096749317 cites W2077217970 @default.
- W3096749317 cites W2116347193 @default.
- W3096749317 cites W2135581534 @default.
- W3096749317 cites W2170166043 @default.
- W3096749317 cites W2513202551 @default.
- W3096749317 cites W2529255831 @default.
- W3096749317 cites W2533319791 @default.
- W3096749317 cites W2559919778 @default.
- W3096749317 cites W2598379669 @default.
- W3096749317 cites W2619868737 @default.
- W3096749317 cites W2744272124 @default.
- W3096749317 cites W2792648564 @default.
- W3096749317 cites W2802302389 @default.
- W3096749317 cites W2887220169 @default.
- W3096749317 cites W2890604518 @default.
- W3096749317 cites W2907885309 @default.
- W3096749317 cites W2909465592 @default.
- W3096749317 cites W2955813252 @default.
- W3096749317 cites W2957738815 @default.
- W3096749317 cites W2985655471 @default.
- W3096749317 cites W2990144895 @default.
- W3096749317 cites W3004923726 @default.
- W3096749317 cites W3016153495 @default.
- W3096749317 cites W3021072645 @default.
- W3096749317 cites W3035111702 @default.
- W3096749317 doi "https://doi.org/10.1016/j.measurement.2020.108675" @default.
- W3096749317 hasPublicationYear "2021" @default.
- W3096749317 type Work @default.
- W3096749317 sameAs 3096749317 @default.
- W3096749317 citedByCount "13" @default.
- W3096749317 countsByYear W30967493172021 @default.
- W3096749317 countsByYear W30967493172022 @default.
- W3096749317 countsByYear W30967493172023 @default.
- W3096749317 crossrefType "journal-article" @default.
- W3096749317 hasAuthorship W3096749317A5000355426 @default.
- W3096749317 hasAuthorship W3096749317A5000976231 @default.
- W3096749317 hasAuthorship W3096749317A5003398556 @default.
- W3096749317 hasAuthorship W3096749317A5023394727 @default.
- W3096749317 hasAuthorship W3096749317A5043347603 @default.
- W3096749317 hasConcept C115961682 @default.
- W3096749317 hasConcept C123201435 @default.
- W3096749317 hasConcept C124101348 @default.
- W3096749317 hasConcept C134306372 @default.
- W3096749317 hasConcept C136264566 @default.
- W3096749317 hasConcept C154945302 @default.
- W3096749317 hasConcept C162324750 @default.
- W3096749317 hasConcept C177148314 @default.
- W3096749317 hasConcept C192448918 @default.
- W3096749317 hasConcept C23130292 @default.
- W3096749317 hasConcept C2777735758 @default.
- W3096749317 hasConcept C2780378061 @default.
- W3096749317 hasConcept C3017597292 @default.
- W3096749317 hasConcept C31258907 @default.
- W3096749317 hasConcept C33923547 @default.
- W3096749317 hasConcept C38652104 @default.
- W3096749317 hasConcept C41008148 @default.
- W3096749317 hasConcept C53533937 @default.
- W3096749317 hasConcept C555944384 @default.
- W3096749317 hasConcept C76155785 @default.
- W3096749317 hasConcept C93996380 @default.
- W3096749317 hasConcept C94523657 @default.
- W3096749317 hasConceptScore W3096749317C115961682 @default.
- W3096749317 hasConceptScore W3096749317C123201435 @default.
- W3096749317 hasConceptScore W3096749317C124101348 @default.
- W3096749317 hasConceptScore W3096749317C134306372 @default.
- W3096749317 hasConceptScore W3096749317C136264566 @default.
- W3096749317 hasConceptScore W3096749317C154945302 @default.
- W3096749317 hasConceptScore W3096749317C162324750 @default.
- W3096749317 hasConceptScore W3096749317C177148314 @default.
- W3096749317 hasConceptScore W3096749317C192448918 @default.
- W3096749317 hasConceptScore W3096749317C23130292 @default.
- W3096749317 hasConceptScore W3096749317C2777735758 @default.
- W3096749317 hasConceptScore W3096749317C2780378061 @default.
- W3096749317 hasConceptScore W3096749317C3017597292 @default.
- W3096749317 hasConceptScore W3096749317C31258907 @default.
- W3096749317 hasConceptScore W3096749317C33923547 @default.
- W3096749317 hasConceptScore W3096749317C38652104 @default.
- W3096749317 hasConceptScore W3096749317C41008148 @default.
- W3096749317 hasConceptScore W3096749317C53533937 @default.
- W3096749317 hasConceptScore W3096749317C555944384 @default.