Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096930836> ?p ?o ?g. }
- W3096930836 abstract "The electricity supply system includes a large-scale power generation installation and a convoluted network of electrical circuits that work together to efficiently and reliably supply electricity to consumers. Faults in the electricity distribution network have a direct effect on its stability, availability and maintenance. Consequently, quick elimination, prevention and avoidance of faults and the causes that generated them, is of special interest . The possible opportunity to both analyse the distribution of faults and predict future failures that may arise can significantly help electricity distribution operators who are accountable for the detection and repair of such problems. Such information is also crucial for any future planning and design of electricity distribution networks as it would significantly help to prevent problematic areas or and identify any additional measures necessary for the protection of underground and overground cables and equipment. The derived information would also be very useful to avoid any potential penalties associated with future network faults imposed by the regulators.Any network component faults result in an outage of power not only in the area fed by them but also in the neighbouring area. Fault prediction in distribution systems has always been of immense importance to utilities to ensure reliable power supply. This research aim is to develop data mining, and machine learning models to accurately predict and forecast Electricity Distribution Network Faults. The specific research objectives are to gain a deeper understanding of Electricity Distribution Network faults and to accurately predict network faults using the National Fault and Interruption Reporting Scheme (NAFIRS) database. Furthermore, this research not only proposes solutions but also provides an in-depth discussion of the associated technical, data gathering and data processing challenges.This research employed multiple case research design, as this allows more opportunities for multiple experiments and cross observation . This research has proposed a new method that analyses historical fault data and seeks to understand the impact of faults with other factors such as the Main Equipment Involved, Component and Direct Cause. This proposed data mining model may be used to safeguard the electrical power distribution system’s key equipment which can be severely damaged by some upcoming faults. The author of this thesis has proposed a new fault segmentation framework which distributed network operators can use to perform fault segmentation. This approach gives the option of performing multidimensional segmentation using various fault characteristics such as a number of faults, a number of minutes lost, and a number of customers affected. Multidimensional segmentation is a powerful conceptual model for the analysis of large and complex datasets.This study provides an in-depth discussion of equipment failure related network faults and compares the performance of a range of forecasting methods with a variety of accuracy measures. The study also provides an in-depth analysis of visual data mining concepts and discusses how using 2D and 3D calendar heat map methods can help provide a relatively new perspective in evaluating temporal patterns in electricity distribution network faults.Finally, the research discusses how external factors, such as local population density, affects electricity distribution network faults. Various classification algorithms were used to build prediction models. Those models were validated and compared for accuracy. The author has also sought to accurately understand the behaviour of Customer Minutes Lost (CML) performance indicators and sought to predict the annual CML figure using other annual financial and network performance indicators such as a number of customers affected, Totex, and Network load.It is anticipated that the work presented within this thesis will to lead to several original contributions to the scientific community who are working with data mining, machine learning and electricity distribution networks." @default.
- W3096930836 created "2020-11-09" @default.
- W3096930836 creator A5016512379 @default.
- W3096930836 date "2020-09-07" @default.
- W3096930836 modified "2023-09-25" @default.
- W3096930836 title "Towards forecasting and prediction of faults in electricity distribution network : a novel data mining & machine learning approach" @default.
- W3096930836 cites W1122216686 @default.
- W3096930836 cites W1505999675 @default.
- W3096930836 cites W1506965148 @default.
- W3096930836 cites W1511339751 @default.
- W3096930836 cites W1527311855 @default.
- W3096930836 cites W1536421609 @default.
- W3096930836 cites W1572121282 @default.
- W3096930836 cites W1573560801 @default.
- W3096930836 cites W1673310716 @default.
- W3096930836 cites W1971784203 @default.
- W3096930836 cites W1985244770 @default.
- W3096930836 cites W2002763067 @default.
- W3096930836 cites W2023171043 @default.
- W3096930836 cites W2033737835 @default.
- W3096930836 cites W2037809340 @default.
- W3096930836 cites W2046303684 @default.
- W3096930836 cites W2051701398 @default.
- W3096930836 cites W2081980673 @default.
- W3096930836 cites W2083722994 @default.
- W3096930836 cites W2084175761 @default.
- W3096930836 cites W2095035191 @default.
- W3096930836 cites W2096179302 @default.
- W3096930836 cites W2103647733 @default.
- W3096930836 cites W2108781206 @default.
- W3096930836 cites W2119479037 @default.
- W3096930836 cites W2120728878 @default.
- W3096930836 cites W2131919497 @default.
- W3096930836 cites W2140190241 @default.
- W3096930836 cites W2142634613 @default.
- W3096930836 cites W2304268162 @default.
- W3096930836 cites W2461772825 @default.
- W3096930836 cites W2568612168 @default.
- W3096930836 cites W2720575949 @default.
- W3096930836 cites W2758133498 @default.
- W3096930836 cites W2767182691 @default.
- W3096930836 cites W2774275323 @default.
- W3096930836 cites W2778600857 @default.
- W3096930836 cites W2786734537 @default.
- W3096930836 cites W2791315675 @default.
- W3096930836 cites W2959360434 @default.
- W3096930836 cites W298212978 @default.
- W3096930836 cites W3105083614 @default.
- W3096930836 cites W45003018 @default.
- W3096930836 cites W76515106 @default.
- W3096930836 hasPublicationYear "2020" @default.
- W3096930836 type Work @default.
- W3096930836 sameAs 3096930836 @default.
- W3096930836 citedByCount "0" @default.
- W3096930836 crossrefType "dissertation" @default.
- W3096930836 hasAuthorship W3096930836A5016512379 @default.
- W3096930836 hasConcept C104708988 @default.
- W3096930836 hasConcept C112972136 @default.
- W3096930836 hasConcept C119599485 @default.
- W3096930836 hasConcept C119857082 @default.
- W3096930836 hasConcept C121332964 @default.
- W3096930836 hasConcept C127313418 @default.
- W3096930836 hasConcept C127413603 @default.
- W3096930836 hasConcept C163258240 @default.
- W3096930836 hasConcept C165205528 @default.
- W3096930836 hasConcept C165801399 @default.
- W3096930836 hasConcept C16986412 @default.
- W3096930836 hasConcept C175551986 @default.
- W3096930836 hasConcept C184773241 @default.
- W3096930836 hasConcept C18762648 @default.
- W3096930836 hasConcept C188573790 @default.
- W3096930836 hasConcept C193415008 @default.
- W3096930836 hasConcept C200601418 @default.
- W3096930836 hasConcept C206658404 @default.
- W3096930836 hasConcept C206888370 @default.
- W3096930836 hasConcept C25536438 @default.
- W3096930836 hasConcept C38652104 @default.
- W3096930836 hasConcept C41008148 @default.
- W3096930836 hasConcept C544738498 @default.
- W3096930836 hasConcept C62520636 @default.
- W3096930836 hasConcept C78519656 @default.
- W3096930836 hasConcept C89227174 @default.
- W3096930836 hasConceptScore W3096930836C104708988 @default.
- W3096930836 hasConceptScore W3096930836C112972136 @default.
- W3096930836 hasConceptScore W3096930836C119599485 @default.
- W3096930836 hasConceptScore W3096930836C119857082 @default.
- W3096930836 hasConceptScore W3096930836C121332964 @default.
- W3096930836 hasConceptScore W3096930836C127313418 @default.
- W3096930836 hasConceptScore W3096930836C127413603 @default.
- W3096930836 hasConceptScore W3096930836C163258240 @default.
- W3096930836 hasConceptScore W3096930836C165205528 @default.
- W3096930836 hasConceptScore W3096930836C165801399 @default.
- W3096930836 hasConceptScore W3096930836C16986412 @default.
- W3096930836 hasConceptScore W3096930836C175551986 @default.
- W3096930836 hasConceptScore W3096930836C184773241 @default.
- W3096930836 hasConceptScore W3096930836C18762648 @default.
- W3096930836 hasConceptScore W3096930836C188573790 @default.
- W3096930836 hasConceptScore W3096930836C193415008 @default.
- W3096930836 hasConceptScore W3096930836C200601418 @default.
- W3096930836 hasConceptScore W3096930836C206658404 @default.