Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097023615> ?p ?o ?g. }
- W3097023615 endingPage "7" @default.
- W3097023615 startingPage "1" @default.
- W3097023615 abstract "The evaluation of the risk is the prerequisite for the implementation of countermeasures in the prevention and control of rock burst, and the research on the fast forecast at scene of the rock burst is more important for the safety production of coal mine. Aiming at the problem that dynamic disasters caused by many factors and heterogeneity of coal and rock are difficult to predict in the process of coal mining, in this paper, the general law and the risk control factors of the rock burst are studied, a mathematical model based on the BP neural network was built according to the different actual mining conditions in the mining area, and the output layer has obtained the prediction result. Then, the results of the output samples after training were fitted by using SPSS software, and the fitting function was obtained by multiple least square fitting. Finally, the fitting results are checked by the data of actual coal mine dynamic disaster parameters. The prediction results show that the simulation results of BP neural network prediction model and the fitting function of the least square method can reduce the impact of subjective judgment on the prediction results, and the application of the fitting function can obtain the prediction results in the first time to ensure the construction safety. The method of on-site hazard assessment and inspection by using fitting function is simple and feasible and has high accuracy, which provides a new idea for the field prediction of rock burst." @default.
- W3097023615 created "2020-11-09" @default.
- W3097023615 creator A5019875110 @default.
- W3097023615 creator A5037143177 @default.
- W3097023615 creator A5054009331 @default.
- W3097023615 creator A5058050465 @default.
- W3097023615 creator A5081927746 @default.
- W3097023615 creator A5086855515 @default.
- W3097023615 date "2020-11-07" @default.
- W3097023615 modified "2023-10-09" @default.
- W3097023615 title "A New Approach of Disaster Forecasting Based on Least Square Optimized Neural Network" @default.
- W3097023615 cites W1674184586 @default.
- W3097023615 cites W2008900996 @default.
- W3097023615 cites W2012594398 @default.
- W3097023615 cites W2019158913 @default.
- W3097023615 cites W2022752101 @default.
- W3097023615 cites W2033816968 @default.
- W3097023615 cites W2054464865 @default.
- W3097023615 cites W2072299458 @default.
- W3097023615 cites W2084191857 @default.
- W3097023615 cites W2171970210 @default.
- W3097023615 cites W2199582638 @default.
- W3097023615 cites W2236349160 @default.
- W3097023615 cites W259713492 @default.
- W3097023615 cites W2597652139 @default.
- W3097023615 cites W2763979317 @default.
- W3097023615 cites W2791636708 @default.
- W3097023615 cites W2793804254 @default.
- W3097023615 cites W2883008720 @default.
- W3097023615 cites W2902343234 @default.
- W3097023615 cites W2943592975 @default.
- W3097023615 cites W4256120034 @default.
- W3097023615 doi "https://doi.org/10.1155/2020/8882241" @default.
- W3097023615 hasPublicationYear "2020" @default.
- W3097023615 type Work @default.
- W3097023615 sameAs 3097023615 @default.
- W3097023615 citedByCount "4" @default.
- W3097023615 countsByYear W30970236152021 @default.
- W3097023615 countsByYear W30970236152022 @default.
- W3097023615 countsByYear W30970236152023 @default.
- W3097023615 crossrefType "journal-article" @default.
- W3097023615 hasAuthorship W3097023615A5019875110 @default.
- W3097023615 hasAuthorship W3097023615A5037143177 @default.
- W3097023615 hasAuthorship W3097023615A5054009331 @default.
- W3097023615 hasAuthorship W3097023615A5058050465 @default.
- W3097023615 hasAuthorship W3097023615A5081927746 @default.
- W3097023615 hasAuthorship W3097023615A5086855515 @default.
- W3097023615 hasBestOaLocation W30970236151 @default.
- W3097023615 hasConcept C105795698 @default.
- W3097023615 hasConcept C108615695 @default.
- W3097023615 hasConcept C111919701 @default.
- W3097023615 hasConcept C11413529 @default.
- W3097023615 hasConcept C124101348 @default.
- W3097023615 hasConcept C127413603 @default.
- W3097023615 hasConcept C139945424 @default.
- W3097023615 hasConcept C14036430 @default.
- W3097023615 hasConcept C154945302 @default.
- W3097023615 hasConcept C16674752 @default.
- W3097023615 hasConcept C178790620 @default.
- W3097023615 hasConcept C185592680 @default.
- W3097023615 hasConcept C202444582 @default.
- W3097023615 hasConcept C2781130035 @default.
- W3097023615 hasConcept C33923547 @default.
- W3097023615 hasConcept C41008148 @default.
- W3097023615 hasConcept C49261128 @default.
- W3097023615 hasConcept C50644808 @default.
- W3097023615 hasConcept C518851703 @default.
- W3097023615 hasConcept C548081761 @default.
- W3097023615 hasConcept C78458016 @default.
- W3097023615 hasConcept C86803240 @default.
- W3097023615 hasConcept C9652623 @default.
- W3097023615 hasConcept C98045186 @default.
- W3097023615 hasConceptScore W3097023615C105795698 @default.
- W3097023615 hasConceptScore W3097023615C108615695 @default.
- W3097023615 hasConceptScore W3097023615C111919701 @default.
- W3097023615 hasConceptScore W3097023615C11413529 @default.
- W3097023615 hasConceptScore W3097023615C124101348 @default.
- W3097023615 hasConceptScore W3097023615C127413603 @default.
- W3097023615 hasConceptScore W3097023615C139945424 @default.
- W3097023615 hasConceptScore W3097023615C14036430 @default.
- W3097023615 hasConceptScore W3097023615C154945302 @default.
- W3097023615 hasConceptScore W3097023615C16674752 @default.
- W3097023615 hasConceptScore W3097023615C178790620 @default.
- W3097023615 hasConceptScore W3097023615C185592680 @default.
- W3097023615 hasConceptScore W3097023615C202444582 @default.
- W3097023615 hasConceptScore W3097023615C2781130035 @default.
- W3097023615 hasConceptScore W3097023615C33923547 @default.
- W3097023615 hasConceptScore W3097023615C41008148 @default.
- W3097023615 hasConceptScore W3097023615C49261128 @default.
- W3097023615 hasConceptScore W3097023615C50644808 @default.
- W3097023615 hasConceptScore W3097023615C518851703 @default.
- W3097023615 hasConceptScore W3097023615C548081761 @default.
- W3097023615 hasConceptScore W3097023615C78458016 @default.
- W3097023615 hasConceptScore W3097023615C86803240 @default.
- W3097023615 hasConceptScore W3097023615C9652623 @default.
- W3097023615 hasConceptScore W3097023615C98045186 @default.
- W3097023615 hasFunder F4320321001 @default.
- W3097023615 hasLocation W30970236151 @default.