Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097029074> ?p ?o ?g. }
- W3097029074 endingPage "110744" @default.
- W3097029074 startingPage "110744" @default.
- W3097029074 abstract "Analysis of multiple equilibria of compounds with different coordination sites is extended to the description of adsorption isotherms with focus on the low relative pressure range. The entropy evolution is described using the particle distribution theory which also holds for adsorbents consisting of materials bearing more than one type of sites and applies for the condition that the adsorptive-adsorbent binding strength is larger than the adsorptive-adsorbate binding strength, so that monolayer coverage is favored. This allows to accurately determine the adsorption enthalpy. No assumption concerning the growth mechanism and specifics regarding the structure of the surface is needed. We find on a rigorous basis that this leads to Langmuir's equation for each site independently, that the total fractional amount of bound adsorptive can be described as a linear combination of individual Langmuir isotherms, and that such a linear combination has never the shape of the original Langmuir isotherms. The results are successfully applied to argon and nitrogen adsorption isotherms of nonporous, microporous, and mesoporous adsorbents which allows comparing systems for which the properties of the active surface span a large range. We observe that all experimental data can accurately be described by means of a linear combination of two Langmuir isotherms in the low relative pressure range up to a coverage of 60%–95%. This means that the shape of all adsorption isotherms is essentially determined by the entropy decrease with increasing coverage. The two site interactions involved exhibit substantially different adsorption enthalpies. Interestingly the Ar enthalpy of adsorption Δ a d s H 1 ∅ of the sites 1 for the Stöber-type silica and of the three investigated MCM-41 adsorbents (with pore size of 2.7 nm, 4.1 nm, and 4.4 nm) are similar, namely −11 kJ/mol. The situation is analogous for the enthalpy of adsorption Δ a d s H 2 ∅ for the sites 2, which amounts to −8 kJ/mol. A significantly larger enthalpy of adsorption Δ a d s H 1 ∅ for the sites 1, namely −14.3 kJ/mol, and Δ a d s H 2 ∅ = − 11.7 kJ / mol for the sites 2 is measured for potassium zeolite L thus reflecting the more polar nature of this adsorbent. The measured specific surface area for these samples ranges from 14 m 2 /g for the Stöber-type silica up to 1100 m 2 /g for the MCM-41(4.1 nm) adsorbent. The information provided by the lc2-L (linear combination of 2 Langmuir functions) analysis allows calculating the evolution of the coverage of site 1 and of site 2 as a function of increasing pressure. The inflection points of the isotherms, which mark the point where the curvature changes sign, were determined by numerically evaluating the second derivatives which vanish at this point and are compared with values obtained using BET analysis." @default.
- W3097029074 created "2020-11-09" @default.
- W3097029074 creator A5008686205 @default.
- W3097029074 creator A5030064619 @default.
- W3097029074 creator A5055819840 @default.
- W3097029074 date "2021-01-01" @default.
- W3097029074 modified "2023-10-03" @default.
- W3097029074 title "Entropy in multiple equilibria. Argon and nitrogen adsorption isotherms of nonporous, microporous, and mesoporous materials" @default.
- W3097029074 cites W1600641482 @default.
- W3097029074 cites W1967753649 @default.
- W3097029074 cites W1975314094 @default.
- W3097029074 cites W1976904757 @default.
- W3097029074 cites W1986113254 @default.
- W3097029074 cites W1993564973 @default.
- W3097029074 cites W2010137158 @default.
- W3097029074 cites W2011254969 @default.
- W3097029074 cites W2018489551 @default.
- W3097029074 cites W2020550165 @default.
- W3097029074 cites W2022640877 @default.
- W3097029074 cites W2025838508 @default.
- W3097029074 cites W2030550781 @default.
- W3097029074 cites W2031380197 @default.
- W3097029074 cites W2035020890 @default.
- W3097029074 cites W2036441796 @default.
- W3097029074 cites W2042909040 @default.
- W3097029074 cites W2049670976 @default.
- W3097029074 cites W2052462513 @default.
- W3097029074 cites W2053727210 @default.
- W3097029074 cites W2055574067 @default.
- W3097029074 cites W2066901900 @default.
- W3097029074 cites W2068280652 @default.
- W3097029074 cites W2085271039 @default.
- W3097029074 cites W2086611616 @default.
- W3097029074 cites W2087070363 @default.
- W3097029074 cites W2087623520 @default.
- W3097029074 cites W2089124524 @default.
- W3097029074 cites W2102691188 @default.
- W3097029074 cites W2112272805 @default.
- W3097029074 cites W2112340803 @default.
- W3097029074 cites W2127735623 @default.
- W3097029074 cites W2132546593 @default.
- W3097029074 cites W2150842775 @default.
- W3097029074 cites W2163096077 @default.
- W3097029074 cites W2165931929 @default.
- W3097029074 cites W2313182775 @default.
- W3097029074 cites W2324388473 @default.
- W3097029074 cites W2330843899 @default.
- W3097029074 cites W2333220160 @default.
- W3097029074 cites W246255829 @default.
- W3097029074 cites W2598402249 @default.
- W3097029074 cites W2742588408 @default.
- W3097029074 cites W2791722228 @default.
- W3097029074 cites W2806068482 @default.
- W3097029074 cites W2886243696 @default.
- W3097029074 cites W2898735281 @default.
- W3097029074 cites W2924161339 @default.
- W3097029074 cites W2972166674 @default.
- W3097029074 cites W843007777 @default.
- W3097029074 doi "https://doi.org/10.1016/j.micromeso.2020.110744" @default.
- W3097029074 hasPublicationYear "2021" @default.
- W3097029074 type Work @default.
- W3097029074 sameAs 3097029074 @default.
- W3097029074 citedByCount "10" @default.
- W3097029074 countsByYear W30970290742021 @default.
- W3097029074 countsByYear W30970290742022 @default.
- W3097029074 countsByYear W30970290742023 @default.
- W3097029074 crossrefType "journal-article" @default.
- W3097029074 hasAuthorship W3097029074A5008686205 @default.
- W3097029074 hasAuthorship W3097029074A5030064619 @default.
- W3097029074 hasAuthorship W3097029074A5055819840 @default.
- W3097029074 hasBestOaLocation W30970290741 @default.
- W3097029074 hasConcept C112825004 @default.
- W3097029074 hasConcept C115958267 @default.
- W3097029074 hasConcept C121332964 @default.
- W3097029074 hasConcept C12143843 @default.
- W3097029074 hasConcept C147789679 @default.
- W3097029074 hasConcept C150394285 @default.
- W3097029074 hasConcept C161790260 @default.
- W3097029074 hasConcept C178790620 @default.
- W3097029074 hasConcept C185592680 @default.
- W3097029074 hasConcept C3288061 @default.
- W3097029074 hasConcept C547737533 @default.
- W3097029074 hasConcept C55493867 @default.
- W3097029074 hasConcept C6648577 @default.
- W3097029074 hasConcept C7070889 @default.
- W3097029074 hasConcept C82776694 @default.
- W3097029074 hasConcept C86381522 @default.
- W3097029074 hasConcept C97355855 @default.
- W3097029074 hasConceptScore W3097029074C112825004 @default.
- W3097029074 hasConceptScore W3097029074C115958267 @default.
- W3097029074 hasConceptScore W3097029074C121332964 @default.
- W3097029074 hasConceptScore W3097029074C12143843 @default.
- W3097029074 hasConceptScore W3097029074C147789679 @default.
- W3097029074 hasConceptScore W3097029074C150394285 @default.
- W3097029074 hasConceptScore W3097029074C161790260 @default.
- W3097029074 hasConceptScore W3097029074C178790620 @default.
- W3097029074 hasConceptScore W3097029074C185592680 @default.
- W3097029074 hasConceptScore W3097029074C3288061 @default.