Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097052489> ?p ?o ?g. }
- W3097052489 endingPage "266" @default.
- W3097052489 startingPage "241" @default.
- W3097052489 abstract "Schwarz's criterion, also known as the Bayesian Information Criterion or BIC, is commonly used for model selection in logistic regression due to its simple intuitive formula. For tests of nested hypotheses in independent and identically distributed data as well as in Normal linear regression, previous results have motivated use of Schwarz's criterion by its consistent approximation to the Bayes factor (BF), defined as the ratio of posterior to prior model odds. Furthermore, under construction of an intuitive unit-information prior for the parameters of interest to test for inclusion in the nested models, previous results have shown that Schwarz's criterion approximates the BF to higher order in the neighborhood of the simpler nested model. This paper extends these results to univariate and multivariate logistic regression, providing approximations to the BF for arbitrary prior distributions and definitions of the unit-information prior corresponding to Schwarz's approximation. Simulations show accuracies of the approximations for small samples sizes as well as comparisons to conclusions from frequentist testing. We present an application in prostate cancer, the motivating setting for our work, which illustrates the approximation for large data sets in a practical example." @default.
- W3097052489 created "2020-11-09" @default.
- W3097052489 creator A5021935717 @default.
- W3097052489 creator A5061399098 @default.
- W3097052489 creator A5083251935 @default.
- W3097052489 date "2020-10-29" @default.
- W3097052489 modified "2023-09-26" @default.
- W3097052489 title "Bayesian information criterion approximations to Bayes factors for univariate and multivariate logistic regression models" @default.
- W3097052489 cites W149585942 @default.
- W3097052489 cites W1509554658 @default.
- W3097052489 cites W1530226021 @default.
- W3097052489 cites W1914974178 @default.
- W3097052489 cites W1959492 @default.
- W3097052489 cites W1970502168 @default.
- W3097052489 cites W1971008858 @default.
- W3097052489 cites W1978761040 @default.
- W3097052489 cites W1985593448 @default.
- W3097052489 cites W1985804706 @default.
- W3097052489 cites W1986863496 @default.
- W3097052489 cites W2003377097 @default.
- W3097052489 cites W2015985330 @default.
- W3097052489 cites W2020712165 @default.
- W3097052489 cites W2026230535 @default.
- W3097052489 cites W2032113267 @default.
- W3097052489 cites W2040905895 @default.
- W3097052489 cites W2049909857 @default.
- W3097052489 cites W2053061982 @default.
- W3097052489 cites W2053068905 @default.
- W3097052489 cites W2054244999 @default.
- W3097052489 cites W2054282473 @default.
- W3097052489 cites W2063394350 @default.
- W3097052489 cites W2070824691 @default.
- W3097052489 cites W2074282020 @default.
- W3097052489 cites W2078269124 @default.
- W3097052489 cites W2089763487 @default.
- W3097052489 cites W2091826868 @default.
- W3097052489 cites W2099874950 @default.
- W3097052489 cites W2103169771 @default.
- W3097052489 cites W2107120167 @default.
- W3097052489 cites W2108306139 @default.
- W3097052489 cites W2112689533 @default.
- W3097052489 cites W2121096014 @default.
- W3097052489 cites W2122218843 @default.
- W3097052489 cites W2130177815 @default.
- W3097052489 cites W2139606141 @default.
- W3097052489 cites W2141419326 @default.
- W3097052489 cites W2159799399 @default.
- W3097052489 cites W2168175751 @default.
- W3097052489 cites W2176075850 @default.
- W3097052489 cites W2189155207 @default.
- W3097052489 cites W2312839476 @default.
- W3097052489 cites W2330404139 @default.
- W3097052489 cites W2526577390 @default.
- W3097052489 cites W2964182087 @default.
- W3097052489 cites W2998850121 @default.
- W3097052489 cites W3097052489 @default.
- W3097052489 cites W3105452317 @default.
- W3097052489 cites W3106158933 @default.
- W3097052489 cites W4211177544 @default.
- W3097052489 cites W4212981821 @default.
- W3097052489 cites W4235761296 @default.
- W3097052489 cites W4249875616 @default.
- W3097052489 cites W4384107268 @default.
- W3097052489 cites W4384111550 @default.
- W3097052489 cites W999084060 @default.
- W3097052489 doi "https://doi.org/10.1515/ijb-2020-0045" @default.
- W3097052489 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33119543" @default.
- W3097052489 hasPublicationYear "2020" @default.
- W3097052489 type Work @default.
- W3097052489 sameAs 3097052489 @default.
- W3097052489 citedByCount "9" @default.
- W3097052489 countsByYear W30970524892020 @default.
- W3097052489 countsByYear W30970524892021 @default.
- W3097052489 countsByYear W30970524892022 @default.
- W3097052489 countsByYear W30970524892023 @default.
- W3097052489 crossrefType "journal-article" @default.
- W3097052489 hasAuthorship W3097052489A5021935717 @default.
- W3097052489 hasAuthorship W3097052489A5061399098 @default.
- W3097052489 hasAuthorship W3097052489A5083251935 @default.
- W3097052489 hasConcept C105795698 @default.
- W3097052489 hasConcept C107673813 @default.
- W3097052489 hasConcept C142291917 @default.
- W3097052489 hasConcept C151956035 @default.
- W3097052489 hasConcept C160234255 @default.
- W3097052489 hasConcept C161584116 @default.
- W3097052489 hasConcept C162376815 @default.
- W3097052489 hasConcept C168136583 @default.
- W3097052489 hasConcept C177769412 @default.
- W3097052489 hasConcept C199163554 @default.
- W3097052489 hasConcept C207201462 @default.
- W3097052489 hasConcept C28826006 @default.
- W3097052489 hasConcept C33923547 @default.
- W3097052489 hasConcept C37903108 @default.
- W3097052489 hasConceptScore W3097052489C105795698 @default.
- W3097052489 hasConceptScore W3097052489C107673813 @default.
- W3097052489 hasConceptScore W3097052489C142291917 @default.
- W3097052489 hasConceptScore W3097052489C151956035 @default.
- W3097052489 hasConceptScore W3097052489C160234255 @default.