Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097060730> ?p ?o ?g. }
- W3097060730 endingPage "6230" @default.
- W3097060730 startingPage "6230" @default.
- W3097060730 abstract "Smart Cities sensing is an emerging paradigm to facilitate the transition into smart city services. The advent of the Internet of Things (IoT) and the widespread use of mobile devices with computing and sensing capabilities has motivated applications that require data acquisition at a societal scale. These valuable data can be leveraged to train advanced Artificial Intelligence (AI) models that serve various smart services that benefit society in all aspects. Despite their effectiveness, legacy data acquisition models backed with centralized Machine Learning models entail security and privacy concerns, and lead to less participation in large-scale sensing and data provision for smart city services. To overcome these challenges, Federated Learning is a novel concept that can serve as a solution to the privacy and security issues encountered within the process of data collection. This survey article presents an overview of smart city sensing and its current challenges followed by the potential of Federated Learning in addressing those challenges. A comprehensive discussion of the state-of-the-art methods for Federated Learning is provided along with an in-depth discussion on the applicability of Federated Learning in smart city sensing; clear insights on open issues, challenges, and opportunities in this field are provided as guidance for the researchers studying this subject matter." @default.
- W3097060730 created "2020-11-09" @default.
- W3097060730 creator A5001226452 @default.
- W3097060730 creator A5003131477 @default.
- W3097060730 creator A5045789655 @default.
- W3097060730 creator A5059138771 @default.
- W3097060730 date "2020-10-31" @default.
- W3097060730 modified "2023-10-14" @default.
- W3097060730 title "Federated Learning in Smart City Sensing: Challenges and Opportunities" @default.
- W3097060730 cites W1581058145 @default.
- W3097060730 cites W1974963036 @default.
- W3097060730 cites W1976535029 @default.
- W3097060730 cites W1977752700 @default.
- W3097060730 cites W1980701825 @default.
- W3097060730 cites W1985221650 @default.
- W3097060730 cites W1994500462 @default.
- W3097060730 cites W2008705190 @default.
- W3097060730 cites W2010186248 @default.
- W3097060730 cites W2017353533 @default.
- W3097060730 cites W2024097794 @default.
- W3097060730 cites W2032596903 @default.
- W3097060730 cites W2044061380 @default.
- W3097060730 cites W2083888899 @default.
- W3097060730 cites W2117141700 @default.
- W3097060730 cites W2125826911 @default.
- W3097060730 cites W2129368140 @default.
- W3097060730 cites W2157646602 @default.
- W3097060730 cites W2184221303 @default.
- W3097060730 cites W2222341944 @default.
- W3097060730 cites W2276327163 @default.
- W3097060730 cites W2294082364 @default.
- W3097060730 cites W2313021646 @default.
- W3097060730 cites W2340767747 @default.
- W3097060730 cites W2465438340 @default.
- W3097060730 cites W2473808492 @default.
- W3097060730 cites W2493168586 @default.
- W3097060730 cites W2502154934 @default.
- W3097060730 cites W2526800568 @default.
- W3097060730 cites W2529113503 @default.
- W3097060730 cites W2531967079 @default.
- W3097060730 cites W2550861680 @default.
- W3097060730 cites W2553019729 @default.
- W3097060730 cites W2562042036 @default.
- W3097060730 cites W2563515642 @default.
- W3097060730 cites W2576179182 @default.
- W3097060730 cites W2576765166 @default.
- W3097060730 cites W2582377923 @default.
- W3097060730 cites W2584259866 @default.
- W3097060730 cites W2591728639 @default.
- W3097060730 cites W2593133890 @default.
- W3097060730 cites W2595033964 @default.
- W3097060730 cites W2595182104 @default.
- W3097060730 cites W2596904372 @default.
- W3097060730 cites W2626052287 @default.
- W3097060730 cites W2734809833 @default.
- W3097060730 cites W2745790198 @default.
- W3097060730 cites W2749141039 @default.
- W3097060730 cites W2752736291 @default.
- W3097060730 cites W2755858093 @default.
- W3097060730 cites W2761757319 @default.
- W3097060730 cites W2767072011 @default.
- W3097060730 cites W2770987547 @default.
- W3097060730 cites W2775562353 @default.
- W3097060730 cites W2783522756 @default.
- W3097060730 cites W2783963507 @default.
- W3097060730 cites W2785766274 @default.
- W3097060730 cites W2787114603 @default.
- W3097060730 cites W2790549555 @default.
- W3097060730 cites W2791256869 @default.
- W3097060730 cites W2794258165 @default.
- W3097060730 cites W2803889862 @default.
- W3097060730 cites W2851207542 @default.
- W3097060730 cites W2883059862 @default.
- W3097060730 cites W2883880986 @default.
- W3097060730 cites W2884698993 @default.
- W3097060730 cites W2885935450 @default.
- W3097060730 cites W2887555757 @default.
- W3097060730 cites W2887817291 @default.
- W3097060730 cites W2889130310 @default.
- W3097060730 cites W2896098600 @default.
- W3097060730 cites W2898012339 @default.
- W3097060730 cites W2899258002 @default.
- W3097060730 cites W2901850888 @default.
- W3097060730 cites W2902543072 @default.
- W3097060730 cites W2903872466 @default.
- W3097060730 cites W2916165350 @default.
- W3097060730 cites W2919420350 @default.
- W3097060730 cites W2921597415 @default.
- W3097060730 cites W2924254303 @default.
- W3097060730 cites W2943384223 @default.
- W3097060730 cites W2943584607 @default.
- W3097060730 cites W2943603304 @default.
- W3097060730 cites W2946551824 @default.
- W3097060730 cites W2947302552 @default.
- W3097060730 cites W2949193783 @default.
- W3097060730 cites W2962804345 @default.
- W3097060730 cites W2963318081 @default.
- W3097060730 cites W2963540401 @default.