Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097097310> ?p ?o ?g. }
- W3097097310 endingPage "710" @default.
- W3097097310 startingPage "695" @default.
- W3097097310 abstract "Event-based sensors, which have a response if the change of pixel intensity exceeds a triggering threshold, can capture high-speed motion with microsecond accuracy. Assisted by an event camera, we can generate high frame-rate sharp videos from low frame-rate blurry ones captured by an intensity camera. In this paper, we propose an effective event-driven video deblurring and interpolation algorithm based on deep convolutional neural networks (CNNs). Motivated by the physical model that the residuals between a blurry image and sharp frames are the integrals of events, the proposed network uses events to estimate the residuals for the sharp frame restoration. As the triggering threshold varies spatially, we develop an effective method to estimate dynamic filters to solve this problem. To utilize the temporal information, the sharp frames restored from the previous blurry frame are also considered. The proposed algorithm achieves superior performance against state-of-the-art methods on both synthetic and real datasets." @default.
- W3097097310 created "2020-11-09" @default.
- W3097097310 creator A5004164569 @default.
- W3097097310 creator A5020276561 @default.
- W3097097310 creator A5026250850 @default.
- W3097097310 creator A5039109630 @default.
- W3097097310 creator A5046790720 @default.
- W3097097310 creator A5073130314 @default.
- W3097097310 creator A5090100121 @default.
- W3097097310 creator A5091543149 @default.
- W3097097310 date "2020-01-01" @default.
- W3097097310 modified "2023-09-24" @default.
- W3097097310 title "Learning Event-Driven Video Deblurring and Interpolation" @default.
- W3097097310 cites W2016574277 @default.
- W3097097310 cites W206948248 @default.
- W3097097310 cites W2081297346 @default.
- W3097097310 cites W2403865344 @default.
- W3097097310 cites W2472115300 @default.
- W3097097310 cites W2560533888 @default.
- W3097097310 cites W2738579427 @default.
- W3097097310 cites W2938463073 @default.
- W3097097310 cites W2963200935 @default.
- W3097097310 cites W2963483509 @default.
- W3097097310 cites W2964132169 @default.
- W3097097310 cites W2964160927 @default.
- W3097097310 cites W2964251418 @default.
- W3097097310 cites W2964317599 @default.
- W3097097310 cites W2964615694 @default.
- W3097097310 cites W2965217508 @default.
- W3097097310 cites W2965669158 @default.
- W3097097310 cites W2970672284 @default.
- W3097097310 cites W2972708139 @default.
- W3097097310 cites W2987477823 @default.
- W3097097310 cites W3035212231 @default.
- W3097097310 cites W3106068969 @default.
- W3097097310 doi "https://doi.org/10.1007/978-3-030-58598-3_41" @default.
- W3097097310 hasPublicationYear "2020" @default.
- W3097097310 type Work @default.
- W3097097310 sameAs 3097097310 @default.
- W3097097310 citedByCount "39" @default.
- W3097097310 countsByYear W30970973102020 @default.
- W3097097310 countsByYear W30970973102021 @default.
- W3097097310 countsByYear W30970973102022 @default.
- W3097097310 countsByYear W30970973102023 @default.
- W3097097310 crossrefType "book-chapter" @default.
- W3097097310 hasAuthorship W3097097310A5004164569 @default.
- W3097097310 hasAuthorship W3097097310A5020276561 @default.
- W3097097310 hasAuthorship W3097097310A5026250850 @default.
- W3097097310 hasAuthorship W3097097310A5039109630 @default.
- W3097097310 hasAuthorship W3097097310A5046790720 @default.
- W3097097310 hasAuthorship W3097097310A5073130314 @default.
- W3097097310 hasAuthorship W3097097310A5090100121 @default.
- W3097097310 hasAuthorship W3097097310A5091543149 @default.
- W3097097310 hasConcept C106430172 @default.
- W3097097310 hasConcept C11413529 @default.
- W3097097310 hasConcept C115961682 @default.
- W3097097310 hasConcept C121332964 @default.
- W3097097310 hasConcept C126042441 @default.
- W3097097310 hasConcept C137800194 @default.
- W3097097310 hasConcept C154945302 @default.
- W3097097310 hasConcept C167510206 @default.
- W3097097310 hasConcept C172849965 @default.
- W3097097310 hasConcept C202474056 @default.
- W3097097310 hasConcept C2777693668 @default.
- W3097097310 hasConcept C2779662365 @default.
- W3097097310 hasConcept C31972630 @default.
- W3097097310 hasConcept C3261483 @default.
- W3097097310 hasConcept C39394851 @default.
- W3097097310 hasConcept C41008148 @default.
- W3097097310 hasConcept C62520636 @default.
- W3097097310 hasConcept C65483669 @default.
- W3097097310 hasConcept C72560505 @default.
- W3097097310 hasConcept C76155785 @default.
- W3097097310 hasConcept C81363708 @default.
- W3097097310 hasConcept C9417928 @default.
- W3097097310 hasConceptScore W3097097310C106430172 @default.
- W3097097310 hasConceptScore W3097097310C11413529 @default.
- W3097097310 hasConceptScore W3097097310C115961682 @default.
- W3097097310 hasConceptScore W3097097310C121332964 @default.
- W3097097310 hasConceptScore W3097097310C126042441 @default.
- W3097097310 hasConceptScore W3097097310C137800194 @default.
- W3097097310 hasConceptScore W3097097310C154945302 @default.
- W3097097310 hasConceptScore W3097097310C167510206 @default.
- W3097097310 hasConceptScore W3097097310C172849965 @default.
- W3097097310 hasConceptScore W3097097310C202474056 @default.
- W3097097310 hasConceptScore W3097097310C2777693668 @default.
- W3097097310 hasConceptScore W3097097310C2779662365 @default.
- W3097097310 hasConceptScore W3097097310C31972630 @default.
- W3097097310 hasConceptScore W3097097310C3261483 @default.
- W3097097310 hasConceptScore W3097097310C39394851 @default.
- W3097097310 hasConceptScore W3097097310C41008148 @default.
- W3097097310 hasConceptScore W3097097310C62520636 @default.
- W3097097310 hasConceptScore W3097097310C65483669 @default.
- W3097097310 hasConceptScore W3097097310C72560505 @default.
- W3097097310 hasConceptScore W3097097310C76155785 @default.
- W3097097310 hasConceptScore W3097097310C81363708 @default.
- W3097097310 hasConceptScore W3097097310C9417928 @default.
- W3097097310 hasLocation W30970973101 @default.