Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097141036> ?p ?o ?g. }
- W3097141036 endingPage "209266" @default.
- W3097141036 startingPage "209251" @default.
- W3097141036 abstract "Wind speed and streamflow series always are nonlinear and unstable because the effects of chaotic weather systems. These inherent features make them difficult to forecast, especially in a changing environment. To improve forecasting accuracy, an innovation uncertainty forecasting architecture is developed by coupling data decomposition method, feature selection, multiple artificial intelligence (AI) techniques and composite strategy to do unstable time series forecasting. In the designed architecture, the AVMD (adaptive variational mode decomposition) is first applied to excavate implicit information from the original time series. Then, the random forest is utilized to select the suitable inputs for each mode. After that, the GPR (Gaussian Process Regression), a very famous probabilistic AI technique, is driven by various neural networks (ELM (Extreme Learning Machine), BP (Back Propagation Neural Networks), GRNN(Generalized Regression Neural Networks) and RBF (Radial Basis Function Neural Networks)) to produce both deterministic and probabilistic forecasting results in a nonlinear manner to play strengths of each other. The effectiveness and applicability of the proposed approach is verified by unstable wind speed data and streamflow data, and also compared with eleven related models. Results indicate that the proposed model not only improves the forecasting accuracy for deterministic predictions, but also provides more probabilistic information for decision making. The proposed method achieves significantly better performance than the traditional forecasting models both on wind speed forecasting and streamflow forecasting with at least 50% average performance promotion over all the eleven competitors. Comprehensive comparisons demonstrate the superior performance of the proposed method than the involved models as a powerful tool for unstable series forecasting." @default.
- W3097141036 created "2020-11-09" @default.
- W3097141036 creator A5003810426 @default.
- W3097141036 creator A5007322337 @default.
- W3097141036 creator A5039473439 @default.
- W3097141036 creator A5043523337 @default.
- W3097141036 creator A5044919859 @default.
- W3097141036 date "2020-01-01" @default.
- W3097141036 modified "2023-10-17" @default.
- W3097141036 title "A Composite Uncertainty Forecasting Model for Unstable Time Series: Application of Wind Speed and Streamflow Forecasting" @default.
- W3097141036 cites W1979534414 @default.
- W3097141036 cites W2000982976 @default.
- W3097141036 cites W2034159055 @default.
- W3097141036 cites W2078923298 @default.
- W3097141036 cites W2120390927 @default.
- W3097141036 cites W2156836859 @default.
- W3097141036 cites W2275988060 @default.
- W3097141036 cites W2513964223 @default.
- W3097141036 cites W2569349941 @default.
- W3097141036 cites W2591494577 @default.
- W3097141036 cites W2600292797 @default.
- W3097141036 cites W2639416113 @default.
- W3097141036 cites W2754358410 @default.
- W3097141036 cites W2767124238 @default.
- W3097141036 cites W2768102848 @default.
- W3097141036 cites W2776146695 @default.
- W3097141036 cites W2783443666 @default.
- W3097141036 cites W2789989341 @default.
- W3097141036 cites W2793121129 @default.
- W3097141036 cites W2802466905 @default.
- W3097141036 cites W2811189390 @default.
- W3097141036 cites W2812669263 @default.
- W3097141036 cites W2891967931 @default.
- W3097141036 cites W2894229023 @default.
- W3097141036 cites W2894776305 @default.
- W3097141036 cites W2909474405 @default.
- W3097141036 cites W2911964244 @default.
- W3097141036 cites W2921489339 @default.
- W3097141036 cites W2943160824 @default.
- W3097141036 cites W2943863241 @default.
- W3097141036 cites W2948700797 @default.
- W3097141036 cites W2950072808 @default.
- W3097141036 cites W2956718877 @default.
- W3097141036 cites W2962851212 @default.
- W3097141036 cites W2963182713 @default.
- W3097141036 cites W2972599842 @default.
- W3097141036 cites W2983772465 @default.
- W3097141036 cites W2989725176 @default.
- W3097141036 cites W2999618686 @default.
- W3097141036 cites W3046247825 @default.
- W3097141036 cites W3087568108 @default.
- W3097141036 doi "https://doi.org/10.1109/access.2020.3034127" @default.
- W3097141036 hasPublicationYear "2020" @default.
- W3097141036 type Work @default.
- W3097141036 sameAs 3097141036 @default.
- W3097141036 citedByCount "7" @default.
- W3097141036 countsByYear W30971410362021 @default.
- W3097141036 countsByYear W30971410362022 @default.
- W3097141036 countsByYear W30971410362023 @default.
- W3097141036 crossrefType "journal-article" @default.
- W3097141036 hasAuthorship W3097141036A5003810426 @default.
- W3097141036 hasAuthorship W3097141036A5007322337 @default.
- W3097141036 hasAuthorship W3097141036A5039473439 @default.
- W3097141036 hasAuthorship W3097141036A5043523337 @default.
- W3097141036 hasAuthorship W3097141036A5044919859 @default.
- W3097141036 hasBestOaLocation W30971410361 @default.
- W3097141036 hasConcept C119857082 @default.
- W3097141036 hasConcept C121332964 @default.
- W3097141036 hasConcept C122282355 @default.
- W3097141036 hasConcept C124101348 @default.
- W3097141036 hasConcept C126645576 @default.
- W3097141036 hasConcept C151406439 @default.
- W3097141036 hasConcept C153294291 @default.
- W3097141036 hasConcept C154945302 @default.
- W3097141036 hasConcept C158622935 @default.
- W3097141036 hasConcept C161067210 @default.
- W3097141036 hasConcept C205649164 @default.
- W3097141036 hasConcept C2780150128 @default.
- W3097141036 hasConcept C41008148 @default.
- W3097141036 hasConcept C49937458 @default.
- W3097141036 hasConcept C50644808 @default.
- W3097141036 hasConcept C53739315 @default.
- W3097141036 hasConcept C58640448 @default.
- W3097141036 hasConcept C62520636 @default.
- W3097141036 hasConceptScore W3097141036C119857082 @default.
- W3097141036 hasConceptScore W3097141036C121332964 @default.
- W3097141036 hasConceptScore W3097141036C122282355 @default.
- W3097141036 hasConceptScore W3097141036C124101348 @default.
- W3097141036 hasConceptScore W3097141036C126645576 @default.
- W3097141036 hasConceptScore W3097141036C151406439 @default.
- W3097141036 hasConceptScore W3097141036C153294291 @default.
- W3097141036 hasConceptScore W3097141036C154945302 @default.
- W3097141036 hasConceptScore W3097141036C158622935 @default.
- W3097141036 hasConceptScore W3097141036C161067210 @default.
- W3097141036 hasConceptScore W3097141036C205649164 @default.
- W3097141036 hasConceptScore W3097141036C2780150128 @default.
- W3097141036 hasConceptScore W3097141036C41008148 @default.
- W3097141036 hasConceptScore W3097141036C49937458 @default.