Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097167541> ?p ?o ?g. }
- W3097167541 endingPage "1433" @default.
- W3097167541 startingPage "1424" @default.
- W3097167541 abstract "Distinguishing adenocarcinoma and squamous cell carcinoma subtypes of non-small cell lung cancers is critical to patient care. Preoperative minimally-invasive biopsy techniques, such as fine needle aspiration (FNA), are increasingly used for lung cancer diagnosis and subtyping. Yet, histologic distinction of lung cancer subtypes in FNA material can be challenging. Here, we evaluated the usefulness of desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to diagnose and differentiate lung cancer subtypes in tissues and FNA samples.DESI-MSI was used to analyze 22 normal, 26 adenocarcinoma, and 25 squamous cell carcinoma lung tissues. Mass spectra obtained from the tissue sections were used to generate and validate statistical classifiers for lung cancer diagnosis and subtyping. Classifiers were then tested on DESI-MSI data collected from 16 clinical FNA samples prospectively collected from 8 patients undergoing interventional radiology guided FNA.Various metabolites and lipid species were detected in the mass spectra obtained from lung tissues. The classifiers generated from tissue sections yielded 100% accuracy, 100% sensitivity, and 100% specificity for lung cancer diagnosis, and 73.5% accuracy for lung cancer subtyping for the training set of tissues, per-patient. On the validation set of tissues, 100% accuracy for lung cancer diagnosis and 94.1% accuracy for lung cancer subtyping were achieved. When tested on the FNA samples, 100% diagnostic accuracy and 87.5% accuracy on subtyping were achieved per-slide.DESI-MSI can be useful as an ancillary technique to conventional cytopathology for diagnosis and subtyping of non-small cell lung cancers." @default.
- W3097167541 created "2020-11-09" @default.
- W3097167541 creator A5002263778 @default.
- W3097167541 creator A5011705563 @default.
- W3097167541 creator A5023251161 @default.
- W3097167541 creator A5027464426 @default.
- W3097167541 creator A5038494195 @default.
- W3097167541 creator A5061130557 @default.
- W3097167541 creator A5081981510 @default.
- W3097167541 date "2020-10-28" @default.
- W3097167541 modified "2023-10-06" @default.
- W3097167541 title "Distinguishing Non-Small Cell Lung Cancer Subtypes in Fine Needle Aspiration Biopsies by Desorption Electrospray Ionization Mass Spectrometry Imaging" @default.
- W3097167541 cites W1653018988 @default.
- W3097167541 cites W1974000725 @default.
- W3097167541 cites W1975292183 @default.
- W3097167541 cites W1976361935 @default.
- W3097167541 cites W2002960454 @default.
- W3097167541 cites W2011748205 @default.
- W3097167541 cites W2029852405 @default.
- W3097167541 cites W2051742304 @default.
- W3097167541 cites W2073441760 @default.
- W3097167541 cites W2091531747 @default.
- W3097167541 cites W2097358067 @default.
- W3097167541 cites W2111454041 @default.
- W3097167541 cites W2114640578 @default.
- W3097167541 cites W2127073086 @default.
- W3097167541 cites W2134040763 @default.
- W3097167541 cites W2164338148 @default.
- W3097167541 cites W2184246862 @default.
- W3097167541 cites W2472397141 @default.
- W3097167541 cites W2498776581 @default.
- W3097167541 cites W2530765965 @default.
- W3097167541 cites W2565155642 @default.
- W3097167541 cites W2620308334 @default.
- W3097167541 cites W2626112488 @default.
- W3097167541 cites W2889270477 @default.
- W3097167541 cites W2911188335 @default.
- W3097167541 cites W2916087340 @default.
- W3097167541 cites W2979936716 @default.
- W3097167541 cites W2996698847 @default.
- W3097167541 cites W4362231430 @default.
- W3097167541 cites W2644804608 @default.
- W3097167541 doi "https://doi.org/10.1093/clinchem/hvaa207" @default.
- W3097167541 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7608526" @default.
- W3097167541 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33141910" @default.
- W3097167541 hasPublicationYear "2020" @default.
- W3097167541 type Work @default.
- W3097167541 sameAs 3097167541 @default.
- W3097167541 citedByCount "16" @default.
- W3097167541 countsByYear W30971675412021 @default.
- W3097167541 countsByYear W30971675412022 @default.
- W3097167541 countsByYear W30971675412023 @default.
- W3097167541 crossrefType "journal-article" @default.
- W3097167541 hasAuthorship W3097167541A5002263778 @default.
- W3097167541 hasAuthorship W3097167541A5011705563 @default.
- W3097167541 hasAuthorship W3097167541A5023251161 @default.
- W3097167541 hasAuthorship W3097167541A5027464426 @default.
- W3097167541 hasAuthorship W3097167541A5038494195 @default.
- W3097167541 hasAuthorship W3097167541A5061130557 @default.
- W3097167541 hasAuthorship W3097167541A5081981510 @default.
- W3097167541 hasBestOaLocation W30971675411 @default.
- W3097167541 hasConcept C121608353 @default.
- W3097167541 hasConcept C126322002 @default.
- W3097167541 hasConcept C126838900 @default.
- W3097167541 hasConcept C142724271 @default.
- W3097167541 hasConcept C162356407 @default.
- W3097167541 hasConcept C185592680 @default.
- W3097167541 hasConcept C18823058 @default.
- W3097167541 hasConcept C199360897 @default.
- W3097167541 hasConcept C24066741 @default.
- W3097167541 hasConcept C2775934546 @default.
- W3097167541 hasConcept C2776170712 @default.
- W3097167541 hasConcept C2776256026 @default.
- W3097167541 hasConcept C2777714996 @default.
- W3097167541 hasConcept C2778654104 @default.
- W3097167541 hasConcept C2781182431 @default.
- W3097167541 hasConcept C41008148 @default.
- W3097167541 hasConcept C43617362 @default.
- W3097167541 hasConcept C71924100 @default.
- W3097167541 hasConcept C83852419 @default.
- W3097167541 hasConceptScore W3097167541C121608353 @default.
- W3097167541 hasConceptScore W3097167541C126322002 @default.
- W3097167541 hasConceptScore W3097167541C126838900 @default.
- W3097167541 hasConceptScore W3097167541C142724271 @default.
- W3097167541 hasConceptScore W3097167541C162356407 @default.
- W3097167541 hasConceptScore W3097167541C185592680 @default.
- W3097167541 hasConceptScore W3097167541C18823058 @default.
- W3097167541 hasConceptScore W3097167541C199360897 @default.
- W3097167541 hasConceptScore W3097167541C24066741 @default.
- W3097167541 hasConceptScore W3097167541C2775934546 @default.
- W3097167541 hasConceptScore W3097167541C2776170712 @default.
- W3097167541 hasConceptScore W3097167541C2776256026 @default.
- W3097167541 hasConceptScore W3097167541C2777714996 @default.
- W3097167541 hasConceptScore W3097167541C2778654104 @default.
- W3097167541 hasConceptScore W3097167541C2781182431 @default.
- W3097167541 hasConceptScore W3097167541C41008148 @default.
- W3097167541 hasConceptScore W3097167541C43617362 @default.
- W3097167541 hasConceptScore W3097167541C71924100 @default.