Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097193306> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3097193306 endingPage "106581" @default.
- W3097193306 startingPage "106581" @default.
- W3097193306 abstract "Graph coloring involves assigning colors to the vertices of a graph such that two vertices linked by an edge receive different colors. Graph coloring problems are general models that are very useful to formulate many relevant applications and, however, are computationally difficult. In this work, a general population-based weight learning framework for solving graph coloring problems is presented. Unlike existing methods for graph coloring that are specific to the considered problem, the presented work targets a generic objective by introducing a unified method that can be applied to different graph coloring problems. This work distinguishes itself by its solving approach that formulates the search of a solution as a continuous weight tensor optimization problem and takes advantage of a gradient descent method computed in parallel on graphics processing units. The proposed approach is also characterized by its general global loss function that can easily be adapted to different graph coloring problems. The usefulness of the proposed approach is demonstrated by applying it to solve two typical graph coloring problems and performing extensive computational studies on popular benchmarks. Improved best-known results (new upper bounds) for the equitable graph coloring problem are reported for several large graphs." @default.
- W3097193306 created "2020-11-09" @default.
- W3097193306 creator A5001023584 @default.
- W3097193306 creator A5011361507 @default.
- W3097193306 creator A5016332970 @default.
- W3097193306 date "2021-01-01" @default.
- W3097193306 modified "2023-09-24" @default.
- W3097193306 title "Population-based gradient descent weight learning for graph coloring problems" @default.
- W3097193306 cites W1582334898 @default.
- W3097193306 cites W1963597719 @default.
- W3097193306 cites W2003291739 @default.
- W3097193306 cites W2007033386 @default.
- W3097193306 cites W2016102370 @default.
- W3097193306 cites W2022490362 @default.
- W3097193306 cites W2025704344 @default.
- W3097193306 cites W2035072380 @default.
- W3097193306 cites W2055440347 @default.
- W3097193306 cites W2060920237 @default.
- W3097193306 cites W2093373574 @default.
- W3097193306 cites W2093938881 @default.
- W3097193306 cites W2100024690 @default.
- W3097193306 cites W2102068573 @default.
- W3097193306 cites W2147800946 @default.
- W3097193306 cites W2168000780 @default.
- W3097193306 cites W2238162990 @default.
- W3097193306 cites W2322334644 @default.
- W3097193306 cites W2790020857 @default.
- W3097193306 cites W2793006232 @default.
- W3097193306 cites W2896837079 @default.
- W3097193306 cites W2901745686 @default.
- W3097193306 cites W2961614712 @default.
- W3097193306 cites W2964249226 @default.
- W3097193306 cites W2971119541 @default.
- W3097193306 cites W3122168144 @default.
- W3097193306 cites W4229647732 @default.
- W3097193306 doi "https://doi.org/10.1016/j.knosys.2020.106581" @default.
- W3097193306 hasPublicationYear "2021" @default.
- W3097193306 type Work @default.
- W3097193306 sameAs 3097193306 @default.
- W3097193306 citedByCount "7" @default.
- W3097193306 countsByYear W30971933062021 @default.
- W3097193306 countsByYear W30971933062022 @default.
- W3097193306 countsByYear W30971933062023 @default.
- W3097193306 crossrefType "journal-article" @default.
- W3097193306 hasAuthorship W3097193306A5001023584 @default.
- W3097193306 hasAuthorship W3097193306A5011361507 @default.
- W3097193306 hasAuthorship W3097193306A5016332970 @default.
- W3097193306 hasBestOaLocation W30971933061 @default.
- W3097193306 hasConcept C123809776 @default.
- W3097193306 hasConcept C132525143 @default.
- W3097193306 hasConcept C149530733 @default.
- W3097193306 hasConcept C199594403 @default.
- W3097193306 hasConcept C203776342 @default.
- W3097193306 hasConcept C38767284 @default.
- W3097193306 hasConcept C41008148 @default.
- W3097193306 hasConcept C76946457 @default.
- W3097193306 hasConcept C80444323 @default.
- W3097193306 hasConceptScore W3097193306C123809776 @default.
- W3097193306 hasConceptScore W3097193306C132525143 @default.
- W3097193306 hasConceptScore W3097193306C149530733 @default.
- W3097193306 hasConceptScore W3097193306C199594403 @default.
- W3097193306 hasConceptScore W3097193306C203776342 @default.
- W3097193306 hasConceptScore W3097193306C38767284 @default.
- W3097193306 hasConceptScore W3097193306C41008148 @default.
- W3097193306 hasConceptScore W3097193306C76946457 @default.
- W3097193306 hasConceptScore W3097193306C80444323 @default.
- W3097193306 hasLocation W30971933061 @default.
- W3097193306 hasLocation W30971933062 @default.
- W3097193306 hasLocation W30971933063 @default.
- W3097193306 hasLocation W30971933064 @default.
- W3097193306 hasOpenAccess W3097193306 @default.
- W3097193306 hasPrimaryLocation W30971933061 @default.
- W3097193306 hasRelatedWork W1170108254 @default.
- W3097193306 hasRelatedWork W1995859989 @default.
- W3097193306 hasRelatedWork W2357418035 @default.
- W3097193306 hasRelatedWork W2380525562 @default.
- W3097193306 hasRelatedWork W3150304134 @default.
- W3097193306 hasRelatedWork W3177216142 @default.
- W3097193306 hasRelatedWork W398688634 @default.
- W3097193306 hasRelatedWork W4255910752 @default.
- W3097193306 hasRelatedWork W4291316360 @default.
- W3097193306 hasRelatedWork W4311345810 @default.
- W3097193306 hasVolume "212" @default.
- W3097193306 isParatext "false" @default.
- W3097193306 isRetracted "false" @default.
- W3097193306 magId "3097193306" @default.
- W3097193306 workType "article" @default.