Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097233919> ?p ?o ?g. }
- W3097233919 endingPage "102258" @default.
- W3097233919 startingPage "102258" @default.
- W3097233919 abstract "Accurate forecast of corn yields is important for decision making regarding food and energy management strategies. In this work, we developed an unprecedented optimized framework for the MODIS-based mid-season corn yield forecasting over five producing states of the United States: Illinois, Indiana, Iowa, Nebraska, and Ohio. We evaluated Enhanced Vegetation Index (EVI)-based forecasts under different schemes accounting for: different machine learning techniques with a mid-season composite or multi-temporal composites as inputs, four (county-, district-, state-, and global-based) training domains, and 16-day composites versus daily interpolated composites involving the day of pixels as predictors. Under the best identified scheme, we compared the EVI-based forecasts with those based on Normalized Difference Vegetation Index (NDVI), Leaf area Index (LAI) and Fraction of Absorbed Photosynthetic Active Radiation (FPAR). EVI and NDVI were transformed to LAI (named as LAIEVI and LAINDVI) as predictors for producing EVI- and NDVI-based forecasts. We evaluated both county- and state-level forecasts using the percent error (PE), mean absolute PE (MAPE) and determination coefficient (R2). The linear regression models driven by the single latest composite in mid-season often outperformed elastic net and random forest models driven by multi-temporal composites. The forecast performance decreased with longer subsets of EVI composites being used. The performance under the different training domains varied by states and forecast level (county or state), although the changes within states were mostly non-significant except in Nebraska. The forecasts based on 16-day and daily composites performed similarly, indicating that the use of information about the day of pixel composite provides no additional benefit to the yield forecast. For the best EVI-based schemes, the medium annual MAPE (PE) at the county (state) level varied between 6.1% (2.4%) and 7.7% (5.3%) across states while the medium annual R2 (interannual R2) varied between 0.54 (0.59) and 0.82 (0.86). Results suggested that, while EVI was, in general, the best predictor for the Corn Belt as a whole, the adequacy of the EVI- and NDVI-based forecasts varied by states and largely exceeded that of the LAI- and FPAR-based forecasts. Compared with the EVI-based forecasts, the NDVI-based forecasts performed better in Iowa (MAPE’s 0.9% and 1.43% lower at the county and state level), similar in Nebraska and worse in the other states. Overall, the best state-level forecasts consistently outperformed concurrent National Agricultural Statistical Service (NASS) forecasts." @default.
- W3097233919 created "2020-11-09" @default.
- W3097233919 creator A5045197228 @default.
- W3097233919 creator A5081431186 @default.
- W3097233919 creator A5090366815 @default.
- W3097233919 date "2021-03-01" @default.
- W3097233919 modified "2023-10-17" @default.
- W3097233919 title "On optimizing a MODIS-based framework for in-season corn yield forecast" @default.
- W3097233919 cites W1680719827 @default.
- W3097233919 cites W1685317713 @default.
- W3097233919 cites W1899165618 @default.
- W3097233919 cites W1968496754 @default.
- W3097233919 cites W1986072339 @default.
- W3097233919 cites W1987415163 @default.
- W3097233919 cites W1993635816 @default.
- W3097233919 cites W1997048056 @default.
- W3097233919 cites W1998025025 @default.
- W3097233919 cites W2002477309 @default.
- W3097233919 cites W2004668576 @default.
- W3097233919 cites W2015037454 @default.
- W3097233919 cites W2017156257 @default.
- W3097233919 cites W2019232777 @default.
- W3097233919 cites W2043153600 @default.
- W3097233919 cites W2043230890 @default.
- W3097233919 cites W2056251274 @default.
- W3097233919 cites W2065032274 @default.
- W3097233919 cites W2070576684 @default.
- W3097233919 cites W2071110539 @default.
- W3097233919 cites W2072093516 @default.
- W3097233919 cites W2080015722 @default.
- W3097233919 cites W2099773839 @default.
- W3097233919 cites W2117162642 @default.
- W3097233919 cites W2122825543 @default.
- W3097233919 cites W2128194617 @default.
- W3097233919 cites W2132077228 @default.
- W3097233919 cites W2147055881 @default.
- W3097233919 cites W2159292710 @default.
- W3097233919 cites W2160566385 @default.
- W3097233919 cites W2160976949 @default.
- W3097233919 cites W2164287959 @default.
- W3097233919 cites W2202019762 @default.
- W3097233919 cites W2492339118 @default.
- W3097233919 cites W2726780760 @default.
- W3097233919 cites W2889668950 @default.
- W3097233919 cites W2911964244 @default.
- W3097233919 cites W3000098473 @default.
- W3097233919 cites W4246540172 @default.
- W3097233919 cites W4294541781 @default.
- W3097233919 doi "https://doi.org/10.1016/j.jag.2020.102258" @default.
- W3097233919 hasPublicationYear "2021" @default.
- W3097233919 type Work @default.
- W3097233919 sameAs 3097233919 @default.
- W3097233919 citedByCount "6" @default.
- W3097233919 countsByYear W30972339192021 @default.
- W3097233919 countsByYear W30972339192022 @default.
- W3097233919 crossrefType "journal-article" @default.
- W3097233919 hasAuthorship W3097233919A5045197228 @default.
- W3097233919 hasAuthorship W3097233919A5081431186 @default.
- W3097233919 hasAuthorship W3097233919A5090366815 @default.
- W3097233919 hasBestOaLocation W30972339191 @default.
- W3097233919 hasConcept C105795698 @default.
- W3097233919 hasConcept C119857082 @default.
- W3097233919 hasConcept C134121241 @default.
- W3097233919 hasConcept C136764020 @default.
- W3097233919 hasConcept C137660486 @default.
- W3097233919 hasConcept C139945424 @default.
- W3097233919 hasConcept C142724271 @default.
- W3097233919 hasConcept C150217764 @default.
- W3097233919 hasConcept C153294291 @default.
- W3097233919 hasConcept C1549246 @default.
- W3097233919 hasConcept C169258074 @default.
- W3097233919 hasConcept C191897082 @default.
- W3097233919 hasConcept C192562407 @default.
- W3097233919 hasConcept C205649164 @default.
- W3097233919 hasConcept C25989453 @default.
- W3097233919 hasConcept C2776133958 @default.
- W3097233919 hasConcept C2777382242 @default.
- W3097233919 hasConcept C2780376076 @default.
- W3097233919 hasConcept C33923547 @default.
- W3097233919 hasConcept C39432304 @default.
- W3097233919 hasConcept C41008148 @default.
- W3097233919 hasConcept C6557445 @default.
- W3097233919 hasConcept C71924100 @default.
- W3097233919 hasConcept C78869512 @default.
- W3097233919 hasConcept C86803240 @default.
- W3097233919 hasConceptScore W3097233919C105795698 @default.
- W3097233919 hasConceptScore W3097233919C119857082 @default.
- W3097233919 hasConceptScore W3097233919C134121241 @default.
- W3097233919 hasConceptScore W3097233919C136764020 @default.
- W3097233919 hasConceptScore W3097233919C137660486 @default.
- W3097233919 hasConceptScore W3097233919C139945424 @default.
- W3097233919 hasConceptScore W3097233919C142724271 @default.
- W3097233919 hasConceptScore W3097233919C150217764 @default.
- W3097233919 hasConceptScore W3097233919C153294291 @default.
- W3097233919 hasConceptScore W3097233919C1549246 @default.
- W3097233919 hasConceptScore W3097233919C169258074 @default.
- W3097233919 hasConceptScore W3097233919C191897082 @default.
- W3097233919 hasConceptScore W3097233919C192562407 @default.