Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097271252> ?p ?o ?g. }
- W3097271252 endingPage "e19739" @default.
- W3097271252 startingPage "e19739" @default.
- W3097271252 abstract "Background Secondary hypertension is a kind of hypertension with a definite etiology and may be cured. Patients with suspected secondary hypertension can benefit from timely detection and treatment and, conversely, will have a higher risk of morbidity and mortality than those with primary hypertension. Objective The aim of this study was to develop and validate machine learning (ML) prediction models of common etiologies in patients with suspected secondary hypertension. Methods The analyzed data set was retrospectively extracted from electronic medical records of patients discharged from Fuwai Hospital between January 1, 2016, and June 30, 2019. A total of 7532 unique patients were included and divided into 2 data sets by time: 6302 patients in 2016-2018 as the training data set for model building and 1230 patients in 2019 as the validation data set for further evaluation. Extreme Gradient Boosting (XGBoost) was adopted to develop 5 models to predict 4 etiologies of secondary hypertension and occurrence of any of them (named as composite outcome), including renovascular hypertension (RVH), primary aldosteronism (PA), thyroid dysfunction, and aortic stenosis. Both univariate logistic analysis and Gini Impurity were used for feature selection. Grid search and 10-fold cross-validation were used to select the optimal hyperparameters for each model. Results Validation of the composite outcome prediction model showed good performance with an area under the receiver-operating characteristic curve (AUC) of 0.924 in the validation data set, while the 4 prediction models of RVH, PA, thyroid dysfunction, and aortic stenosis achieved AUC of 0.938, 0.965, 0.959, and 0.946, respectively, in the validation data set. A total of 79 clinical indicators were identified in all and finally used in our prediction models. The result of subgroup analysis on the composite outcome prediction model demonstrated high discrimination with AUCs all higher than 0.890 among all age groups of adults. Conclusions The ML prediction models in this study showed good performance in detecting 4 etiologies of patients with suspected secondary hypertension; thus, they may potentially facilitate clinical diagnosis decision making of secondary hypertension in an intelligent way." @default.
- W3097271252 created "2020-11-09" @default.
- W3097271252 creator A5000421694 @default.
- W3097271252 creator A5009363967 @default.
- W3097271252 creator A5013794662 @default.
- W3097271252 creator A5020681362 @default.
- W3097271252 creator A5033611874 @default.
- W3097271252 creator A5056484501 @default.
- W3097271252 creator A5067500703 @default.
- W3097271252 creator A5087616429 @default.
- W3097271252 date "2021-01-25" @default.
- W3097271252 modified "2023-10-16" @default.
- W3097271252 title "An Application of Machine Learning to Etiological Diagnosis of Secondary Hypertension: Retrospective Study Using Electronic Medical Records" @default.
- W3097271252 cites W2137951873 @default.
- W3097271252 cites W2148143831 @default.
- W3097271252 cites W2151433145 @default.
- W3097271252 cites W2381413656 @default.
- W3097271252 cites W2547984025 @default.
- W3097271252 cites W2741016737 @default.
- W3097271252 cites W2747420241 @default.
- W3097271252 cites W2766115844 @default.
- W3097271252 cites W2766991488 @default.
- W3097271252 cites W2786814109 @default.
- W3097271252 cites W2793486692 @default.
- W3097271252 cites W2799923309 @default.
- W3097271252 cites W2802250559 @default.
- W3097271252 cites W2806930130 @default.
- W3097271252 cites W2807593075 @default.
- W3097271252 cites W2835818200 @default.
- W3097271252 cites W2886281300 @default.
- W3097271252 cites W2886522935 @default.
- W3097271252 cites W2889985719 @default.
- W3097271252 cites W2898841345 @default.
- W3097271252 cites W2901043010 @default.
- W3097271252 cites W2901607560 @default.
- W3097271252 cites W2903130798 @default.
- W3097271252 cites W2903837644 @default.
- W3097271252 cites W2908201961 @default.
- W3097271252 cites W2921476071 @default.
- W3097271252 cites W2941013735 @default.
- W3097271252 cites W2945471000 @default.
- W3097271252 cites W2946185430 @default.
- W3097271252 cites W2949784258 @default.
- W3097271252 cites W2952312197 @default.
- W3097271252 cites W2964696298 @default.
- W3097271252 cites W2966218717 @default.
- W3097271252 cites W2967692750 @default.
- W3097271252 cites W2971891052 @default.
- W3097271252 cites W2972268072 @default.
- W3097271252 cites W2972605659 @default.
- W3097271252 cites W2975026923 @default.
- W3097271252 cites W2989961964 @default.
- W3097271252 cites W3014201629 @default.
- W3097271252 cites W3031989616 @default.
- W3097271252 cites W3102476541 @default.
- W3097271252 doi "https://doi.org/10.2196/19739" @default.
- W3097271252 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7870351" @default.
- W3097271252 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33492233" @default.
- W3097271252 hasPublicationYear "2021" @default.
- W3097271252 type Work @default.
- W3097271252 sameAs 3097271252 @default.
- W3097271252 citedByCount "13" @default.
- W3097271252 countsByYear W30972712522021 @default.
- W3097271252 countsByYear W30972712522022 @default.
- W3097271252 countsByYear W30972712522023 @default.
- W3097271252 crossrefType "journal-article" @default.
- W3097271252 hasAuthorship W3097271252A5000421694 @default.
- W3097271252 hasAuthorship W3097271252A5009363967 @default.
- W3097271252 hasAuthorship W3097271252A5013794662 @default.
- W3097271252 hasAuthorship W3097271252A5020681362 @default.
- W3097271252 hasAuthorship W3097271252A5033611874 @default.
- W3097271252 hasAuthorship W3097271252A5056484501 @default.
- W3097271252 hasAuthorship W3097271252A5067500703 @default.
- W3097271252 hasAuthorship W3097271252A5087616429 @default.
- W3097271252 hasBestOaLocation W30972712521 @default.
- W3097271252 hasConcept C119857082 @default.
- W3097271252 hasConcept C126322002 @default.
- W3097271252 hasConcept C137627325 @default.
- W3097271252 hasConcept C151956035 @default.
- W3097271252 hasConcept C167135981 @default.
- W3097271252 hasConcept C2777581072 @default.
- W3097271252 hasConcept C41008148 @default.
- W3097271252 hasConcept C58471807 @default.
- W3097271252 hasConcept C71924100 @default.
- W3097271252 hasConcept C84393581 @default.
- W3097271252 hasConceptScore W3097271252C119857082 @default.
- W3097271252 hasConceptScore W3097271252C126322002 @default.
- W3097271252 hasConceptScore W3097271252C137627325 @default.
- W3097271252 hasConceptScore W3097271252C151956035 @default.
- W3097271252 hasConceptScore W3097271252C167135981 @default.
- W3097271252 hasConceptScore W3097271252C2777581072 @default.
- W3097271252 hasConceptScore W3097271252C41008148 @default.
- W3097271252 hasConceptScore W3097271252C58471807 @default.
- W3097271252 hasConceptScore W3097271252C71924100 @default.
- W3097271252 hasConceptScore W3097271252C84393581 @default.
- W3097271252 hasIssue "1" @default.
- W3097271252 hasLocation W30972712521 @default.
- W3097271252 hasLocation W30972712522 @default.