Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097340282> ?p ?o ?g. }
- W3097340282 endingPage "187" @default.
- W3097340282 startingPage "187" @default.
- W3097340282 abstract "The advent of social media, particularly Twitter, raises many issues due to a misunderstanding regarding the concept of freedom of speech. One of these issues is cyberbullying, which is a critical global issue that affects both individual victims and societies. Many attempts have been introduced in the literature to intervene in, prevent, or mitigate cyberbullying; however, because these attempts rely on the victims’ interactions, they are not practical. Therefore, detection of cyberbullying without the involvement of the victims is necessary. In this study, we attempted to explore this issue by compiling a global dataset of 37,373 unique tweets from Twitter. Moreover, seven machine learning classifiers were used, namely, Logistic Regression (LR), Light Gradient Boosting Machine (LGBM), Stochastic Gradient Descent (SGD), Random Forest (RF), AdaBoost (ADB), Naive Bayes (NB), and Support Vector Machine (SVM). Each of these algorithms was evaluated using accuracy, precision, recall, and F1 score as the performance metrics to determine the classifiers’ recognition rates applied to the global dataset. The experimental results show the superiority of LR, which achieved a median accuracy of around 90.57%. Among the classifiers, logistic regression achieved the best F1 score (0.928), SGD achieved the best precision (0.968), and SVM achieved the best recall (1.00)." @default.
- W3097340282 created "2020-11-09" @default.
- W3097340282 creator A5038354395 @default.
- W3097340282 creator A5079557375 @default.
- W3097340282 date "2020-10-29" @default.
- W3097340282 modified "2023-10-15" @default.
- W3097340282 title "A Comparative Analysis of Machine Learning Techniques for Cyberbullying Detection on Twitter" @default.
- W3097340282 cites W1527608753 @default.
- W3097340282 cites W1597317536 @default.
- W3097340282 cites W1976930398 @default.
- W3097340282 cites W1978394996 @default.
- W3097340282 cites W1981895204 @default.
- W3097340282 cites W1984755864 @default.
- W3097340282 cites W1989265262 @default.
- W3097340282 cites W2000453371 @default.
- W3097340282 cites W2003584729 @default.
- W3097340282 cites W2011608379 @default.
- W3097340282 cites W2013024757 @default.
- W3097340282 cites W2019759670 @default.
- W3097340282 cites W2030623877 @default.
- W3097340282 cites W2031236208 @default.
- W3097340282 cites W2036509711 @default.
- W3097340282 cites W2038874215 @default.
- W3097340282 cites W2044173330 @default.
- W3097340282 cites W2060110416 @default.
- W3097340282 cites W2087430522 @default.
- W3097340282 cites W2122090782 @default.
- W3097340282 cites W2124478428 @default.
- W3097340282 cites W2132005941 @default.
- W3097340282 cites W2144310056 @default.
- W3097340282 cites W2146525329 @default.
- W3097340282 cites W2152118606 @default.
- W3097340282 cites W2152126085 @default.
- W3097340282 cites W2153896900 @default.
- W3097340282 cites W2162035666 @default.
- W3097340282 cites W2342408547 @default.
- W3097340282 cites W2416164492 @default.
- W3097340282 cites W2562947506 @default.
- W3097340282 cites W2579569167 @default.
- W3097340282 cites W2784010253 @default.
- W3097340282 cites W2794284813 @default.
- W3097340282 cites W2911964244 @default.
- W3097340282 cites W2919350184 @default.
- W3097340282 cites W2944944177 @default.
- W3097340282 cites W2945434935 @default.
- W3097340282 cites W2946826359 @default.
- W3097340282 cites W2963849072 @default.
- W3097340282 cites W2964780269 @default.
- W3097340282 cites W2980963255 @default.
- W3097340282 cites W2982222442 @default.
- W3097340282 cites W3005455537 @default.
- W3097340282 cites W3006437281 @default.
- W3097340282 cites W3013437827 @default.
- W3097340282 cites W3042290176 @default.
- W3097340282 cites W3044806259 @default.
- W3097340282 cites W3057439119 @default.
- W3097340282 cites W3080756874 @default.
- W3097340282 cites W3105625590 @default.
- W3097340282 cites W84853486 @default.
- W3097340282 doi "https://doi.org/10.3390/fi12110187" @default.
- W3097340282 hasPublicationYear "2020" @default.
- W3097340282 type Work @default.
- W3097340282 sameAs 3097340282 @default.
- W3097340282 citedByCount "57" @default.
- W3097340282 countsByYear W30973402822021 @default.
- W3097340282 countsByYear W30973402822022 @default.
- W3097340282 countsByYear W30973402822023 @default.
- W3097340282 crossrefType "journal-article" @default.
- W3097340282 hasAuthorship W3097340282A5038354395 @default.
- W3097340282 hasAuthorship W3097340282A5079557375 @default.
- W3097340282 hasBestOaLocation W30973402821 @default.
- W3097340282 hasConcept C100660578 @default.
- W3097340282 hasConcept C119857082 @default.
- W3097340282 hasConcept C12267149 @default.
- W3097340282 hasConcept C136764020 @default.
- W3097340282 hasConcept C141404830 @default.
- W3097340282 hasConcept C148524875 @default.
- W3097340282 hasConcept C151956035 @default.
- W3097340282 hasConcept C154945302 @default.
- W3097340282 hasConcept C15744967 @default.
- W3097340282 hasConcept C169258074 @default.
- W3097340282 hasConcept C180747234 @default.
- W3097340282 hasConcept C206688291 @default.
- W3097340282 hasConcept C41008148 @default.
- W3097340282 hasConcept C46686674 @default.
- W3097340282 hasConcept C50644808 @default.
- W3097340282 hasConcept C518677369 @default.
- W3097340282 hasConcept C52001869 @default.
- W3097340282 hasConcept C70153297 @default.
- W3097340282 hasConcept C81669768 @default.
- W3097340282 hasConceptScore W3097340282C100660578 @default.
- W3097340282 hasConceptScore W3097340282C119857082 @default.
- W3097340282 hasConceptScore W3097340282C12267149 @default.
- W3097340282 hasConceptScore W3097340282C136764020 @default.
- W3097340282 hasConceptScore W3097340282C141404830 @default.
- W3097340282 hasConceptScore W3097340282C148524875 @default.
- W3097340282 hasConceptScore W3097340282C151956035 @default.
- W3097340282 hasConceptScore W3097340282C154945302 @default.