Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097386298> ?p ?o ?g. }
- W3097386298 endingPage "47766" @default.
- W3097386298 startingPage "47753" @default.
- W3097386298 abstract "In this era of exponential growth in the scale of data, information overload has become an urgent problem, and the use of increasingly flexible sensor cloud systems (SCS) for data collection has become a mainstream trend. Recommendation algorithms can search massive data sets to uncover information that meets the needs of users based on their interests. To improve the accuracy of recommendation scoring, this article proposes a score prediction algorithm that combines deep learning and matrix factorization. To address the problem of sparse scoring data, our study employs a sensor cloud system to collect data information, preprocesses the collected information, and then uses a deep learning model combined with explicit and implicit feedback to generate recommendations. The proposed algorithm, MF-NeuRec, combines fusion matrix decomposition and the NeuRec model score prediction algorithm. The algorithm employs user-based and item-based NeuRec algorithms to extract the feature vectors of users and items under implicit feedback data. The obtained user and item feature vectors are integrated in a certain ratio through the use of matrix decomposition under the display feedback data. The user and item feature vectors obtained by the algorithm are merged and analyzed to predict how users will rate items. Experiments demonstrate that the algorithm can improve the accuracy of recommendations." @default.
- W3097386298 created "2020-11-09" @default.
- W3097386298 creator A5017329468 @default.
- W3097386298 creator A5020854396 @default.
- W3097386298 creator A5025542589 @default.
- W3097386298 creator A5027010844 @default.
- W3097386298 creator A5027917555 @default.
- W3097386298 creator A5032507421 @default.
- W3097386298 creator A5078072524 @default.
- W3097386298 date "2021-01-01" @default.
- W3097386298 modified "2023-10-17" @default.
- W3097386298 title "Score Prediction Algorithm Combining Deep Learning and Matrix Factorization in Sensor Cloud Systems" @default.
- W3097386298 cites W1574110213 @default.
- W3097386298 cites W1720514416 @default.
- W3097386298 cites W1987431925 @default.
- W3097386298 cites W1994389483 @default.
- W3097386298 cites W2054141820 @default.
- W3097386298 cites W2108920354 @default.
- W3097386298 cites W2116396873 @default.
- W3097386298 cites W2120615054 @default.
- W3097386298 cites W2142144955 @default.
- W3097386298 cites W2245341025 @default.
- W3097386298 cites W2253995343 @default.
- W3097386298 cites W2272453175 @default.
- W3097386298 cites W2295739661 @default.
- W3097386298 cites W2515144511 @default.
- W3097386298 cites W2524594657 @default.
- W3097386298 cites W2605350416 @default.
- W3097386298 cites W2612892203 @default.
- W3097386298 cites W2740920897 @default.
- W3097386298 cites W2767669124 @default.
- W3097386298 cites W2767892721 @default.
- W3097386298 cites W2788667846 @default.
- W3097386298 cites W2808190017 @default.
- W3097386298 cites W2891867693 @default.
- W3097386298 cites W2900229157 @default.
- W3097386298 cites W2904467883 @default.
- W3097386298 cites W2922146383 @default.
- W3097386298 cites W2962712142 @default.
- W3097386298 cites W2963458513 @default.
- W3097386298 cites W2963902947 @default.
- W3097386298 cites W2964169350 @default.
- W3097386298 cites W2966714118 @default.
- W3097386298 cites W2966779056 @default.
- W3097386298 cites W2972550657 @default.
- W3097386298 cites W2984834462 @default.
- W3097386298 cites W2993158215 @default.
- W3097386298 cites W2995837271 @default.
- W3097386298 cites W3032951514 @default.
- W3097386298 cites W3034003953 @default.
- W3097386298 cites W3035661448 @default.
- W3097386298 cites W3092413484 @default.
- W3097386298 cites W3099825604 @default.
- W3097386298 cites W3102560000 @default.
- W3097386298 doi "https://doi.org/10.1109/access.2020.3035162" @default.
- W3097386298 hasPublicationYear "2021" @default.
- W3097386298 type Work @default.
- W3097386298 sameAs 3097386298 @default.
- W3097386298 citedByCount "6" @default.
- W3097386298 countsByYear W30973862982021 @default.
- W3097386298 countsByYear W30973862982022 @default.
- W3097386298 countsByYear W30973862982023 @default.
- W3097386298 crossrefType "journal-article" @default.
- W3097386298 hasAuthorship W3097386298A5017329468 @default.
- W3097386298 hasAuthorship W3097386298A5020854396 @default.
- W3097386298 hasAuthorship W3097386298A5025542589 @default.
- W3097386298 hasAuthorship W3097386298A5027010844 @default.
- W3097386298 hasAuthorship W3097386298A5027917555 @default.
- W3097386298 hasAuthorship W3097386298A5032507421 @default.
- W3097386298 hasAuthorship W3097386298A5078072524 @default.
- W3097386298 hasBestOaLocation W30973862981 @default.
- W3097386298 hasConcept C111919701 @default.
- W3097386298 hasConcept C11413529 @default.
- W3097386298 hasConcept C119857082 @default.
- W3097386298 hasConcept C121332964 @default.
- W3097386298 hasConcept C124101348 @default.
- W3097386298 hasConcept C138885662 @default.
- W3097386298 hasConcept C154945302 @default.
- W3097386298 hasConcept C158693339 @default.
- W3097386298 hasConcept C163716315 @default.
- W3097386298 hasConcept C2776401178 @default.
- W3097386298 hasConcept C41008148 @default.
- W3097386298 hasConcept C41895202 @default.
- W3097386298 hasConcept C42355184 @default.
- W3097386298 hasConcept C557471498 @default.
- W3097386298 hasConcept C56372850 @default.
- W3097386298 hasConcept C62520636 @default.
- W3097386298 hasConcept C79974875 @default.
- W3097386298 hasConceptScore W3097386298C111919701 @default.
- W3097386298 hasConceptScore W3097386298C11413529 @default.
- W3097386298 hasConceptScore W3097386298C119857082 @default.
- W3097386298 hasConceptScore W3097386298C121332964 @default.
- W3097386298 hasConceptScore W3097386298C124101348 @default.
- W3097386298 hasConceptScore W3097386298C138885662 @default.
- W3097386298 hasConceptScore W3097386298C154945302 @default.
- W3097386298 hasConceptScore W3097386298C158693339 @default.
- W3097386298 hasConceptScore W3097386298C163716315 @default.
- W3097386298 hasConceptScore W3097386298C2776401178 @default.