Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097431146> ?p ?o ?g. }
- W3097431146 endingPage "572" @default.
- W3097431146 startingPage "557" @default.
- W3097431146 abstract "BACKGROUND: To combat COVID-19, curb the pandemic, and manage containment, governments around the world are turning to data collection and population monitoring for analysis and prediction. The massive data generated through the use of big data and artificial intelligence can play an important role in addressing this unprecedented global health and economic crisis. OBJECTIVES: The objective of this work is to develop an expert system that combines several solutions to combat COVID-19. The main solution is based on a new developed software called General Guide (GG) application. This expert system allows us to explore, monitor, forecast, and optimize the data collected in order to take an efficient decision to ensure the safety of citizens, forecast, and slow down the spread’s rate of COVID-19. It will also facilitate countries’ interventions and optimize resources. Moreover, other solutions can be integrated into this expert system, such as the automatic vehicle and passenger sanitizing system equipped with a thermal and smart High Definition (HD) cameras and multi-purpose drones which offer many services. All of these solutions will facilitate lifting COVID-19 restrictions and minimize the impact of this pandemic. METHODS: The methods used in this expert system will assist in designing and analyzing the model based on big data and artificial intelligence (machine learning). This can enhance countries’ abilities and tools in monitoring, combating, and predicting the spread of COVID-19. RESULTS: The results obtained by this prediction process and the use of the above mentioned solutions will help monitor, predict, generate indicators, and make operational decisions to stop the spread of COVID-19. CONCLUSIONS: This developed expert system can assist in stopping the spread of COVID-19 globally and putting the world back to work." @default.
- W3097431146 created "2020-11-09" @default.
- W3097431146 creator A5011844740 @default.
- W3097431146 creator A5020452603 @default.
- W3097431146 creator A5033330486 @default.
- W3097431146 creator A5065523209 @default.
- W3097431146 creator A5067645236 @default.
- W3097431146 date "2020-12-01" @default.
- W3097431146 modified "2023-09-23" @default.
- W3097431146 title "Putting the world back to work: An expert system using big data and artificial intelligence in combating the spread of COVID-19 and similar contagious diseases" @default.
- W3097431146 cites W1935880800 @default.
- W3097431146 cites W2094827932 @default.
- W3097431146 cites W2119059351 @default.
- W3097431146 cites W2121456247 @default.
- W3097431146 cites W2163922914 @default.
- W3097431146 cites W2487200295 @default.
- W3097431146 cites W2530277182 @default.
- W3097431146 cites W2540184605 @default.
- W3097431146 cites W2888500435 @default.
- W3097431146 cites W2908724328 @default.
- W3097431146 cites W2948000013 @default.
- W3097431146 cites W2964101383 @default.
- W3097431146 cites W2995730558 @default.
- W3097431146 cites W3006732380 @default.
- W3097431146 cites W3010610910 @default.
- W3097431146 cites W3011176674 @default.
- W3097431146 cites W3014207782 @default.
- W3097431146 cites W3015315333 @default.
- W3097431146 cites W4244024004 @default.
- W3097431146 doi "https://doi.org/10.3233/wor-203309" @default.
- W3097431146 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33164971" @default.
- W3097431146 hasPublicationYear "2020" @default.
- W3097431146 type Work @default.
- W3097431146 sameAs 3097431146 @default.
- W3097431146 citedByCount "11" @default.
- W3097431146 countsByYear W30974311462021 @default.
- W3097431146 countsByYear W30974311462022 @default.
- W3097431146 countsByYear W30974311462023 @default.
- W3097431146 crossrefType "journal-article" @default.
- W3097431146 hasAuthorship W3097431146A5011844740 @default.
- W3097431146 hasAuthorship W3097431146A5020452603 @default.
- W3097431146 hasAuthorship W3097431146A5033330486 @default.
- W3097431146 hasAuthorship W3097431146A5065523209 @default.
- W3097431146 hasAuthorship W3097431146A5067645236 @default.
- W3097431146 hasBestOaLocation W30974311461 @default.
- W3097431146 hasConcept C105795698 @default.
- W3097431146 hasConcept C111919701 @default.
- W3097431146 hasConcept C112930515 @default.
- W3097431146 hasConcept C124101348 @default.
- W3097431146 hasConcept C127413603 @default.
- W3097431146 hasConcept C133462117 @default.
- W3097431146 hasConcept C142724271 @default.
- W3097431146 hasConcept C144024400 @default.
- W3097431146 hasConcept C144133560 @default.
- W3097431146 hasConcept C149923435 @default.
- W3097431146 hasConcept C154945302 @default.
- W3097431146 hasConcept C18762648 @default.
- W3097431146 hasConcept C199360897 @default.
- W3097431146 hasConcept C2522767166 @default.
- W3097431146 hasConcept C2777904410 @default.
- W3097431146 hasConcept C2779134260 @default.
- W3097431146 hasConcept C2908647359 @default.
- W3097431146 hasConcept C3008058167 @default.
- W3097431146 hasConcept C33923547 @default.
- W3097431146 hasConcept C38652104 @default.
- W3097431146 hasConcept C41008148 @default.
- W3097431146 hasConcept C42475967 @default.
- W3097431146 hasConcept C524204448 @default.
- W3097431146 hasConcept C58328972 @default.
- W3097431146 hasConcept C71924100 @default.
- W3097431146 hasConcept C75684735 @default.
- W3097431146 hasConcept C78519656 @default.
- W3097431146 hasConcept C89623803 @default.
- W3097431146 hasConcept C98045186 @default.
- W3097431146 hasConceptScore W3097431146C105795698 @default.
- W3097431146 hasConceptScore W3097431146C111919701 @default.
- W3097431146 hasConceptScore W3097431146C112930515 @default.
- W3097431146 hasConceptScore W3097431146C124101348 @default.
- W3097431146 hasConceptScore W3097431146C127413603 @default.
- W3097431146 hasConceptScore W3097431146C133462117 @default.
- W3097431146 hasConceptScore W3097431146C142724271 @default.
- W3097431146 hasConceptScore W3097431146C144024400 @default.
- W3097431146 hasConceptScore W3097431146C144133560 @default.
- W3097431146 hasConceptScore W3097431146C149923435 @default.
- W3097431146 hasConceptScore W3097431146C154945302 @default.
- W3097431146 hasConceptScore W3097431146C18762648 @default.
- W3097431146 hasConceptScore W3097431146C199360897 @default.
- W3097431146 hasConceptScore W3097431146C2522767166 @default.
- W3097431146 hasConceptScore W3097431146C2777904410 @default.
- W3097431146 hasConceptScore W3097431146C2779134260 @default.
- W3097431146 hasConceptScore W3097431146C2908647359 @default.
- W3097431146 hasConceptScore W3097431146C3008058167 @default.
- W3097431146 hasConceptScore W3097431146C33923547 @default.
- W3097431146 hasConceptScore W3097431146C38652104 @default.
- W3097431146 hasConceptScore W3097431146C41008148 @default.
- W3097431146 hasConceptScore W3097431146C42475967 @default.
- W3097431146 hasConceptScore W3097431146C524204448 @default.
- W3097431146 hasConceptScore W3097431146C58328972 @default.