Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097432087> ?p ?o ?g. }
- W3097432087 abstract "We consider a natural model of online preference aggregation, where sets of preferred items $R_1, R_2, ldots, R_t$ along with a demand for $k_t$ items in each $R_t$, appear online. Without prior knowledge of $(R_t, k_t)$, the learner maintains a ranking $pi_t$ aiming that at least $k_t$ items from $R_t$ appear high in $pi_t$. This is a fundamental problem in preference aggregation with applications to, e.g., ordering product or news items in web pages based on user scrolling and click patterns. The widely studied Generalized Min-Sum-Set-Cover (GMSSC) problem serves as a formal model for the setting above. GMSSC is NP-hard and the standard application of no-regret online learning algorithms is computationally inefficient, because they operate in the space of rankings. In this work, we show how to achieve low regret for GMSSC in polynomial-time. We employ dimensionality reduction from rankings to the space of doubly stochastic matrices, where we apply Online Gradient Descent. A key step is to show how subgradients can be computed efficiently, by solving the dual of a configuration LP. Using oblivious deterministic and randomized rounding schemes, we map doubly stochastic matrices back to rankings with a small loss in the GMSSC objective." @default.
- W3097432087 created "2020-11-09" @default.
- W3097432087 creator A5020247743 @default.
- W3097432087 creator A5021246308 @default.
- W3097432087 creator A5079969658 @default.
- W3097432087 creator A5081225965 @default.
- W3097432087 date "2020-11-05" @default.
- W3097432087 modified "2023-09-27" @default.
- W3097432087 title "Efficient Online Learning of Optimal Rankings: Dimensionality Reduction via Gradient Descent" @default.
- W3097432087 cites W1522619327 @default.
- W3097432087 cites W1567921001 @default.
- W3097432087 cites W1576536481 @default.
- W3097432087 cites W159752407 @default.
- W3097432087 cites W169739242 @default.
- W3097432087 cites W1854885336 @default.
- W3097432087 cites W2012731843 @default.
- W3097432087 cites W2051834357 @default.
- W3097432087 cites W2058000074 @default.
- W3097432087 cites W2098258765 @default.
- W3097432087 cites W2118980425 @default.
- W3097432087 cites W2121671791 @default.
- W3097432087 cites W2123959253 @default.
- W3097432087 cites W2135414222 @default.
- W3097432087 cites W2137905700 @default.
- W3097432087 cites W2147086810 @default.
- W3097432087 cites W2147987034 @default.
- W3097432087 cites W2148450486 @default.
- W3097432087 cites W2157755598 @default.
- W3097432087 cites W2159007113 @default.
- W3097432087 cites W2160834479 @default.
- W3097432087 cites W2165701842 @default.
- W3097432087 cites W2166998862 @default.
- W3097432087 cites W2171913181 @default.
- W3097432087 cites W2174015049 @default.
- W3097432087 cites W2222991227 @default.
- W3097432087 cites W2513180554 @default.
- W3097432087 cites W2606082375 @default.
- W3097432087 cites W2887146843 @default.
- W3097432087 cites W2963088049 @default.
- W3097432087 cites W2963659614 @default.
- W3097432087 cites W2963778039 @default.
- W3097432087 cites W2963881312 @default.
- W3097432087 cites W2964139427 @default.
- W3097432087 cites W2964245654 @default.
- W3097432087 cites W30074706 @default.
- W3097432087 cites W3023115439 @default.
- W3097432087 cites W3037553274 @default.
- W3097432087 cites W3125851432 @default.
- W3097432087 cites W83280460 @default.
- W3097432087 hasPublicationYear "2020" @default.
- W3097432087 type Work @default.
- W3097432087 sameAs 3097432087 @default.
- W3097432087 citedByCount "0" @default.
- W3097432087 crossrefType "posted-content" @default.
- W3097432087 hasAuthorship W3097432087A5020247743 @default.
- W3097432087 hasAuthorship W3097432087A5021246308 @default.
- W3097432087 hasAuthorship W3097432087A5079969658 @default.
- W3097432087 hasAuthorship W3097432087A5081225965 @default.
- W3097432087 hasConcept C105795698 @default.
- W3097432087 hasConcept C111030470 @default.
- W3097432087 hasConcept C111335779 @default.
- W3097432087 hasConcept C111919701 @default.
- W3097432087 hasConcept C114614502 @default.
- W3097432087 hasConcept C118615104 @default.
- W3097432087 hasConcept C119857082 @default.
- W3097432087 hasConcept C126255220 @default.
- W3097432087 hasConcept C127413603 @default.
- W3097432087 hasConcept C136625980 @default.
- W3097432087 hasConcept C153258448 @default.
- W3097432087 hasConcept C154945302 @default.
- W3097432087 hasConcept C189430467 @default.
- W3097432087 hasConcept C206688291 @default.
- W3097432087 hasConcept C2524010 @default.
- W3097432087 hasConcept C2778572836 @default.
- W3097432087 hasConcept C2780428219 @default.
- W3097432087 hasConcept C2781249084 @default.
- W3097432087 hasConcept C33923547 @default.
- W3097432087 hasConcept C41008148 @default.
- W3097432087 hasConcept C50644808 @default.
- W3097432087 hasConcept C50817715 @default.
- W3097432087 hasConcept C70518039 @default.
- W3097432087 hasConcept C78519656 @default.
- W3097432087 hasConcept C80444323 @default.
- W3097432087 hasConceptScore W3097432087C105795698 @default.
- W3097432087 hasConceptScore W3097432087C111030470 @default.
- W3097432087 hasConceptScore W3097432087C111335779 @default.
- W3097432087 hasConceptScore W3097432087C111919701 @default.
- W3097432087 hasConceptScore W3097432087C114614502 @default.
- W3097432087 hasConceptScore W3097432087C118615104 @default.
- W3097432087 hasConceptScore W3097432087C119857082 @default.
- W3097432087 hasConceptScore W3097432087C126255220 @default.
- W3097432087 hasConceptScore W3097432087C127413603 @default.
- W3097432087 hasConceptScore W3097432087C136625980 @default.
- W3097432087 hasConceptScore W3097432087C153258448 @default.
- W3097432087 hasConceptScore W3097432087C154945302 @default.
- W3097432087 hasConceptScore W3097432087C189430467 @default.
- W3097432087 hasConceptScore W3097432087C206688291 @default.
- W3097432087 hasConceptScore W3097432087C2524010 @default.
- W3097432087 hasConceptScore W3097432087C2778572836 @default.
- W3097432087 hasConceptScore W3097432087C2780428219 @default.