Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097566126> ?p ?o ?g. }
- W3097566126 endingPage "3504" @default.
- W3097566126 startingPage "3504" @default.
- W3097566126 abstract "Cotton root rot is a destructive cotton disease and significantly affects cotton quality and yield, and accurate identification of its distribution within fields is critical for cotton growers to control the disease effectively. In this study, Sentinel-2 images were used to explore the feasibility of creating classification maps and prescription maps for site-specific fungicide application. Eight cotton fields with different levels of root rot were selected and random forest (RF) was used to identify the optimal spectral indices and texture features of the Sentinel-2 images. Five optimal spectral indices (plant senescence reflectance index (PSRI), normalized difference vegetation index (NDVI), normalized difference water index (NDWI1), moisture stressed index (MSI), and renormalized difference vegetation index (RDVI)) and seven optimal texture features (Contrast 1, Dissimilarity 1, Entory 2, Mean 1, Variance 1, Homogeneity 1, and Second moment 2) were identified. Three binary logistic regression (BLR) models, including a spectral model, a texture model, and a spectral-texture model, were constructed for cotton root rot classification and prescription map creation. The results were compared with classification maps and prescription maps based on airborne imagery. Accuracy assessment showed that the accuracies of the classification maps for the spectral, texture, and spectral-texture models were 92.95%, 84.81%, and 91.87%, respectively, and the accuracies of the prescription maps for the three respective models were 90.83%, 87.14%, and 91.40%. These results confirmed that it was feasible to identify cotton root rot and create prescription maps using different features of Sentinel-2 imagery. The addition of texture features had little effect on the overall accuracy, but it could improve the ability to identify root rot areas. The producer’s accuracy (PA) for infested cotton in the classification maps for the texture model and the spectral-texture model was 2.82% and 1.07% higher, respectively, than that of the spectral model, and the PA for treatment zones in the prescription maps for the two respective models was 8.6% and 8.22% higher than that of the spectral model. Results based on the eight cotton fields showed that the spectral model was appropriate for the cotton fields with relatively severe infestation and the spectral-texture model was more appropriate for the cotton fields with low or moderate infestation." @default.
- W3097566126 created "2020-11-09" @default.
- W3097566126 creator A5004048109 @default.
- W3097566126 creator A5037147299 @default.
- W3097566126 creator A5045441407 @default.
- W3097566126 creator A5049743100 @default.
- W3097566126 creator A5049898739 @default.
- W3097566126 creator A5085289799 @default.
- W3097566126 date "2020-10-25" @default.
- W3097566126 modified "2023-10-05" @default.
- W3097566126 title "Identification of Cotton Root Rot by Multifeature Selection from Sentinel-2 Images Using Random Forest" @default.
- W3097566126 cites W1775703606 @default.
- W3097566126 cites W1969548928 @default.
- W3097566126 cites W1969741917 @default.
- W3097566126 cites W1974110440 @default.
- W3097566126 cites W1978617972 @default.
- W3097566126 cites W1980058571 @default.
- W3097566126 cites W1986738039 @default.
- W3097566126 cites W1993349014 @default.
- W3097566126 cites W1995620815 @default.
- W3097566126 cites W2001316982 @default.
- W3097566126 cites W2006690683 @default.
- W3097566126 cites W2008950984 @default.
- W3097566126 cites W2010633042 @default.
- W3097566126 cites W2011475440 @default.
- W3097566126 cites W2025967407 @default.
- W3097566126 cites W2034085189 @default.
- W3097566126 cites W2038976302 @default.
- W3097566126 cites W2041004141 @default.
- W3097566126 cites W2044465660 @default.
- W3097566126 cites W2045668366 @default.
- W3097566126 cites W2057039778 @default.
- W3097566126 cites W2057474132 @default.
- W3097566126 cites W2063689707 @default.
- W3097566126 cites W2066547068 @default.
- W3097566126 cites W2077653178 @default.
- W3097566126 cites W2085613837 @default.
- W3097566126 cites W2087338953 @default.
- W3097566126 cites W2092549935 @default.
- W3097566126 cites W2101350555 @default.
- W3097566126 cites W2138973222 @default.
- W3097566126 cites W2144362041 @default.
- W3097566126 cites W2159961845 @default.
- W3097566126 cites W2166326933 @default.
- W3097566126 cites W2219964536 @default.
- W3097566126 cites W2296406991 @default.
- W3097566126 cites W2297564073 @default.
- W3097566126 cites W2332981326 @default.
- W3097566126 cites W2519006045 @default.
- W3097566126 cites W2561146901 @default.
- W3097566126 cites W2613071559 @default.
- W3097566126 cites W2740594002 @default.
- W3097566126 cites W2753812127 @default.
- W3097566126 cites W2788945171 @default.
- W3097566126 cites W2791172538 @default.
- W3097566126 cites W2807404598 @default.
- W3097566126 cites W2811141663 @default.
- W3097566126 cites W2921554645 @default.
- W3097566126 cites W2945958600 @default.
- W3097566126 cites W2948159964 @default.
- W3097566126 cites W2951948330 @default.
- W3097566126 cites W2969545732 @default.
- W3097566126 cites W2995815143 @default.
- W3097566126 cites W2998592969 @default.
- W3097566126 cites W3001516132 @default.
- W3097566126 cites W3011636776 @default.
- W3097566126 cites W3012400249 @default.
- W3097566126 cites W3013580370 @default.
- W3097566126 cites W3021367936 @default.
- W3097566126 cites W3029149175 @default.
- W3097566126 cites W3030068230 @default.
- W3097566126 cites W3037492164 @default.
- W3097566126 doi "https://doi.org/10.3390/rs12213504" @default.
- W3097566126 hasPublicationYear "2020" @default.
- W3097566126 type Work @default.
- W3097566126 sameAs 3097566126 @default.
- W3097566126 citedByCount "15" @default.
- W3097566126 countsByYear W30975661262021 @default.
- W3097566126 countsByYear W30975661262022 @default.
- W3097566126 countsByYear W30975661262023 @default.
- W3097566126 crossrefType "journal-article" @default.
- W3097566126 hasAuthorship W3097566126A5004048109 @default.
- W3097566126 hasAuthorship W3097566126A5037147299 @default.
- W3097566126 hasAuthorship W3097566126A5045441407 @default.
- W3097566126 hasAuthorship W3097566126A5049743100 @default.
- W3097566126 hasAuthorship W3097566126A5049898739 @default.
- W3097566126 hasAuthorship W3097566126A5085289799 @default.
- W3097566126 hasBestOaLocation W30975661261 @default.
- W3097566126 hasConcept C105795698 @default.
- W3097566126 hasConcept C142724271 @default.
- W3097566126 hasConcept C153180895 @default.
- W3097566126 hasConcept C1549246 @default.
- W3097566126 hasConcept C154945302 @default.
- W3097566126 hasConcept C159390177 @default.
- W3097566126 hasConcept C159750122 @default.
- W3097566126 hasConcept C175963888 @default.
- W3097566126 hasConcept C205649164 @default.
- W3097566126 hasConcept C25989453 @default.