Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097582232> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3097582232 endingPage "12" @default.
- W3097582232 startingPage "1" @default.
- W3097582232 abstract "Beginning in December 2019, the spread of the novel Coronavirus (COVID-19) has exposed weaknesses in healthcare systems across the world. To sufficiently contain the virus, countries have had to carry out a set of extraordinary measures, including exhaustive testing and screening for positive cases of the disease. It is crucial to detect and isolate those who are infected as soon as possible to keep the virus contained. However, in countries and areas where there are limited COVID-19 testing kits, there is an urgent need for alternative diagnostic measures. The standard screening method currently used for detecting COVID-19 cases is RT-PCR testing, which is a very time-consuming, laborious, and complicated manual process. Given that nearly all hospitals have X-ray imaging machines, it is possible to use X-rays to screen for COVID-19 without the dedicated test kits and separate those who are infected and those who are not. In this study, we applied deep convolutional neural networks on chest X-rays to determine this phenomena. The proposed deep learning model produced an average classification accuracy of 90.64% and F1-Score of 89.8% after performing 5-fold cross-validation on a multi-class dataset consisting of COVID-19, Viral Pneumonia, and normal X-ray images." @default.
- W3097582232 created "2020-11-09" @default.
- W3097582232 creator A5017876645 @default.
- W3097582232 creator A5038582941 @default.
- W3097582232 creator A5076999947 @default.
- W3097582232 date "2021-01-02" @default.
- W3097582232 modified "2023-10-03" @default.
- W3097582232 title "A Deep Learning Approach for COVID-19 8 Viral Pneumonia Screening with X-ray Images" @default.
- W3097582232 cites W2016016168 @default.
- W3097582232 cites W2124954038 @default.
- W3097582232 cites W2996890481 @default.
- W3097582232 cites W3012994592 @default.
- W3097582232 cites W3014640306 @default.
- W3097582232 cites W3015622421 @default.
- W3097582232 cites W3036552116 @default.
- W3097582232 cites W3037538421 @default.
- W3097582232 doi "https://doi.org/10.1145/3431804" @default.
- W3097582232 hasPublicationYear "2021" @default.
- W3097582232 type Work @default.
- W3097582232 sameAs 3097582232 @default.
- W3097582232 citedByCount "16" @default.
- W3097582232 countsByYear W30975822322021 @default.
- W3097582232 countsByYear W30975822322022 @default.
- W3097582232 countsByYear W30975822322023 @default.
- W3097582232 crossrefType "journal-article" @default.
- W3097582232 hasAuthorship W3097582232A5017876645 @default.
- W3097582232 hasAuthorship W3097582232A5038582941 @default.
- W3097582232 hasAuthorship W3097582232A5076999947 @default.
- W3097582232 hasBestOaLocation W30975822321 @default.
- W3097582232 hasConcept C108583219 @default.
- W3097582232 hasConcept C119857082 @default.
- W3097582232 hasConcept C126322002 @default.
- W3097582232 hasConcept C142724271 @default.
- W3097582232 hasConcept C153180895 @default.
- W3097582232 hasConcept C154945302 @default.
- W3097582232 hasConcept C159047783 @default.
- W3097582232 hasConcept C169903167 @default.
- W3097582232 hasConcept C2777914695 @default.
- W3097582232 hasConcept C2778158872 @default.
- W3097582232 hasConcept C2779134260 @default.
- W3097582232 hasConcept C3007834351 @default.
- W3097582232 hasConcept C3008058167 @default.
- W3097582232 hasConcept C41008148 @default.
- W3097582232 hasConcept C524204448 @default.
- W3097582232 hasConcept C71924100 @default.
- W3097582232 hasConcept C81363708 @default.
- W3097582232 hasConceptScore W3097582232C108583219 @default.
- W3097582232 hasConceptScore W3097582232C119857082 @default.
- W3097582232 hasConceptScore W3097582232C126322002 @default.
- W3097582232 hasConceptScore W3097582232C142724271 @default.
- W3097582232 hasConceptScore W3097582232C153180895 @default.
- W3097582232 hasConceptScore W3097582232C154945302 @default.
- W3097582232 hasConceptScore W3097582232C159047783 @default.
- W3097582232 hasConceptScore W3097582232C169903167 @default.
- W3097582232 hasConceptScore W3097582232C2777914695 @default.
- W3097582232 hasConceptScore W3097582232C2778158872 @default.
- W3097582232 hasConceptScore W3097582232C2779134260 @default.
- W3097582232 hasConceptScore W3097582232C3007834351 @default.
- W3097582232 hasConceptScore W3097582232C3008058167 @default.
- W3097582232 hasConceptScore W3097582232C41008148 @default.
- W3097582232 hasConceptScore W3097582232C524204448 @default.
- W3097582232 hasConceptScore W3097582232C71924100 @default.
- W3097582232 hasConceptScore W3097582232C81363708 @default.
- W3097582232 hasIssue "2" @default.
- W3097582232 hasLocation W30975822321 @default.
- W3097582232 hasOpenAccess W3097582232 @default.
- W3097582232 hasPrimaryLocation W30975822321 @default.
- W3097582232 hasRelatedWork W2731899572 @default.
- W3097582232 hasRelatedWork W3004511262 @default.
- W3097582232 hasRelatedWork W3008700721 @default.
- W3097582232 hasRelatedWork W3012050440 @default.
- W3097582232 hasRelatedWork W3099765033 @default.
- W3097582232 hasRelatedWork W3114196634 @default.
- W3097582232 hasRelatedWork W3133861977 @default.
- W3097582232 hasRelatedWork W4200173597 @default.
- W3097582232 hasRelatedWork W4312417841 @default.
- W3097582232 hasRelatedWork W4321369474 @default.
- W3097582232 hasVolume "2" @default.
- W3097582232 isParatext "false" @default.
- W3097582232 isRetracted "false" @default.
- W3097582232 magId "3097582232" @default.
- W3097582232 workType "article" @default.