Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097622287> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W3097622287 abstract "Abstract Calibrating inelastic models for high temperature materials used in advanced reactor heat exchangers is a critical aspect in accurately predicting their deformation behavior under different loading conditions, and thus determining the corresponding failure times. The experimental data against which these models are calibrated often contains a wide degree of variability caused by heat-to-heat material property variations and general experimental uncertainty. Most often, model calibration is done against mean of these experimental data without considering this variability. In this work we aim to capture the bounds of the viscoplastic parameter uncertainties that enclose this observed scatter in the experimental data using Bayesian Markov Chain Monte Carlo (MCMC) methods. Bayesian inference provides a probabilistic framework that allows to coherently quantify parameter uncertainties based on some prior parameter distributions and the available data. To perform the statistical Bayesian MCMC analysis, a pre-calibrated model, fitted against mean of the experimental data, is used as an initial guess for the prior distribution and bounds, while further sampling is done using Meteropolis–Hastings algorithm for four Markov chains in tandem, to finally obtain the posterior distribution of the model parameters. Since different inelastic parameters are sensitive to different tests, data from multiple experimental conditions (tensile, and creep) are combined to capture the bounds in all the parameters. The developed statistical model reasonably captures the scatter observed in the experimental data. Quantifying uncertainty in inelastic models will improve high temperature engineering design practice and lead to safer, more effective component designs." @default.
- W3097622287 created "2020-11-09" @default.
- W3097622287 creator A5005969347 @default.
- W3097622287 creator A5048339949 @default.
- W3097622287 creator A5091768196 @default.
- W3097622287 date "2020-08-03" @default.
- W3097622287 modified "2023-10-14" @default.
- W3097622287 title "Uncertainty Quantification of Viscoplastic Parameters for Grade 91 Steel Through Bayesian Analysis" @default.
- W3097622287 doi "https://doi.org/10.1115/pvp2020-21306" @default.
- W3097622287 hasPublicationYear "2020" @default.
- W3097622287 type Work @default.
- W3097622287 sameAs 3097622287 @default.
- W3097622287 citedByCount "0" @default.
- W3097622287 crossrefType "proceedings-article" @default.
- W3097622287 hasAuthorship W3097622287A5005969347 @default.
- W3097622287 hasAuthorship W3097622287A5048339949 @default.
- W3097622287 hasAuthorship W3097622287A5091768196 @default.
- W3097622287 hasConcept C105795698 @default.
- W3097622287 hasConcept C107673813 @default.
- W3097622287 hasConcept C111350023 @default.
- W3097622287 hasConcept C11413529 @default.
- W3097622287 hasConcept C119857082 @default.
- W3097622287 hasConcept C154945302 @default.
- W3097622287 hasConcept C160234255 @default.
- W3097622287 hasConcept C165838908 @default.
- W3097622287 hasConcept C19499675 @default.
- W3097622287 hasConcept C32230216 @default.
- W3097622287 hasConcept C33923547 @default.
- W3097622287 hasConcept C41008148 @default.
- W3097622287 hasConcept C55037315 @default.
- W3097622287 hasConceptScore W3097622287C105795698 @default.
- W3097622287 hasConceptScore W3097622287C107673813 @default.
- W3097622287 hasConceptScore W3097622287C111350023 @default.
- W3097622287 hasConceptScore W3097622287C11413529 @default.
- W3097622287 hasConceptScore W3097622287C119857082 @default.
- W3097622287 hasConceptScore W3097622287C154945302 @default.
- W3097622287 hasConceptScore W3097622287C160234255 @default.
- W3097622287 hasConceptScore W3097622287C165838908 @default.
- W3097622287 hasConceptScore W3097622287C19499675 @default.
- W3097622287 hasConceptScore W3097622287C32230216 @default.
- W3097622287 hasConceptScore W3097622287C33923547 @default.
- W3097622287 hasConceptScore W3097622287C41008148 @default.
- W3097622287 hasConceptScore W3097622287C55037315 @default.
- W3097622287 hasLocation W30976222871 @default.
- W3097622287 hasOpenAccess W3097622287 @default.
- W3097622287 hasPrimaryLocation W30976222871 @default.
- W3097622287 hasRelatedWork W11798639 @default.
- W3097622287 hasRelatedWork W13567707 @default.
- W3097622287 hasRelatedWork W14594575 @default.
- W3097622287 hasRelatedWork W29006066 @default.
- W3097622287 hasRelatedWork W30154952 @default.
- W3097622287 hasRelatedWork W31324191 @default.
- W3097622287 hasRelatedWork W52156672 @default.
- W3097622287 hasRelatedWork W56073996 @default.
- W3097622287 hasRelatedWork W62542827 @default.
- W3097622287 hasRelatedWork W44488664 @default.
- W3097622287 isParatext "false" @default.
- W3097622287 isRetracted "false" @default.
- W3097622287 magId "3097622287" @default.
- W3097622287 workType "article" @default.