Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097627840> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3097627840 endingPage "199" @default.
- W3097627840 startingPage "188" @default.
- W3097627840 abstract "Slightly sprouted wheat kernels are difficult to distinguish with the naked eye, and the mixing of sprouted kernels into sound wheat kernels will seriously reduce the quality of wheat products. This study explored the use of near-infrared hyperspectral imaging technology to identify sound wheat kernels and slightly sprouted wheat kernels, and obtained hyperspectral images on both sides of each wheat kernel. A variety of common spectral preprocessing methods and two characteristic extraction algorithms (competitive adaptive reweighted sampling (CARS), and successive projections algorithm (SPA)) were used to combine two traditional machine learning models (linear discriminant analysis (LDA), and support vector machine (SVM)) and a special deep learning model (deep forest (DF)) to establish classification models. After analysis, it was found that the modelling effect of using the reverse side spectral data was slightly better than the ventral side spectral data, and the Savitzky–Golay smoothing (SG)-CARS-DF model was the optimal model combination. Finally, combined with actual needs, the modelling effect of the characteristic wavelengths extracted from the reverse side spectral data in the mixed spectral data sets containing different ratios of reverse side spectral data was analysed, and the results were also satisfactory. The results showed that it was better to calibrate the model with the hyperspectral data on the reverse side of wheat kernels, as this would be more helpful for identifying sound and slightly sprouted wheat kernels." @default.
- W3097627840 created "2020-11-09" @default.
- W3097627840 creator A5008915690 @default.
- W3097627840 creator A5011993969 @default.
- W3097627840 creator A5013813356 @default.
- W3097627840 creator A5020769177 @default.
- W3097627840 date "2020-12-01" @default.
- W3097627840 modified "2023-09-28" @default.
- W3097627840 title "Non-destructive identification of slightly sprouted wheat kernels using hyperspectral data on both sides of wheat kernels" @default.
- W3097627840 cites W2015415108 @default.
- W3097627840 cites W2046776319 @default.
- W3097627840 cites W2050393410 @default.
- W3097627840 cites W2057632254 @default.
- W3097627840 cites W2083220141 @default.
- W3097627840 cites W2094213917 @default.
- W3097627840 cites W2176688086 @default.
- W3097627840 cites W2189901927 @default.
- W3097627840 cites W2260427180 @default.
- W3097627840 cites W2289651220 @default.
- W3097627840 cites W2342065169 @default.
- W3097627840 cites W2416903412 @default.
- W3097627840 cites W2519678035 @default.
- W3097627840 cites W2607557338 @default.
- W3097627840 cites W2735495447 @default.
- W3097627840 cites W2789152424 @default.
- W3097627840 cites W2806067324 @default.
- W3097627840 cites W2892929442 @default.
- W3097627840 cites W2897480023 @default.
- W3097627840 cites W2905319599 @default.
- W3097627840 cites W2910512548 @default.
- W3097627840 cites W2917883159 @default.
- W3097627840 cites W2922266863 @default.
- W3097627840 cites W2938749448 @default.
- W3097627840 cites W2950309476 @default.
- W3097627840 cites W2967515564 @default.
- W3097627840 cites W2972951566 @default.
- W3097627840 cites W2982101625 @default.
- W3097627840 cites W2995074731 @default.
- W3097627840 cites W4232714830 @default.
- W3097627840 doi "https://doi.org/10.1016/j.biosystemseng.2020.10.004" @default.
- W3097627840 hasPublicationYear "2020" @default.
- W3097627840 type Work @default.
- W3097627840 sameAs 3097627840 @default.
- W3097627840 citedByCount "20" @default.
- W3097627840 countsByYear W30976278402021 @default.
- W3097627840 countsByYear W30976278402022 @default.
- W3097627840 countsByYear W30976278402023 @default.
- W3097627840 crossrefType "journal-article" @default.
- W3097627840 hasAuthorship W3097627840A5008915690 @default.
- W3097627840 hasAuthorship W3097627840A5011993969 @default.
- W3097627840 hasAuthorship W3097627840A5013813356 @default.
- W3097627840 hasAuthorship W3097627840A5020769177 @default.
- W3097627840 hasConcept C116834253 @default.
- W3097627840 hasConcept C127313418 @default.
- W3097627840 hasConcept C154945302 @default.
- W3097627840 hasConcept C159078339 @default.
- W3097627840 hasConcept C33923547 @default.
- W3097627840 hasConcept C41008148 @default.
- W3097627840 hasConcept C59822182 @default.
- W3097627840 hasConcept C62649853 @default.
- W3097627840 hasConcept C86803240 @default.
- W3097627840 hasConceptScore W3097627840C116834253 @default.
- W3097627840 hasConceptScore W3097627840C127313418 @default.
- W3097627840 hasConceptScore W3097627840C154945302 @default.
- W3097627840 hasConceptScore W3097627840C159078339 @default.
- W3097627840 hasConceptScore W3097627840C33923547 @default.
- W3097627840 hasConceptScore W3097627840C41008148 @default.
- W3097627840 hasConceptScore W3097627840C59822182 @default.
- W3097627840 hasConceptScore W3097627840C62649853 @default.
- W3097627840 hasConceptScore W3097627840C86803240 @default.
- W3097627840 hasFunder F4320335777 @default.
- W3097627840 hasLocation W30976278401 @default.
- W3097627840 hasOpenAccess W3097627840 @default.
- W3097627840 hasPrimaryLocation W30976278401 @default.
- W3097627840 hasRelatedWork W2014286142 @default.
- W3097627840 hasRelatedWork W2083270190 @default.
- W3097627840 hasRelatedWork W2122141505 @default.
- W3097627840 hasRelatedWork W2188660374 @default.
- W3097627840 hasRelatedWork W2385371209 @default.
- W3097627840 hasRelatedWork W2533978591 @default.
- W3097627840 hasRelatedWork W2612882618 @default.
- W3097627840 hasRelatedWork W2948825694 @default.
- W3097627840 hasRelatedWork W2998323711 @default.
- W3097627840 hasRelatedWork W1991437568 @default.
- W3097627840 hasVolume "200" @default.
- W3097627840 isParatext "false" @default.
- W3097627840 isRetracted "false" @default.
- W3097627840 magId "3097627840" @default.
- W3097627840 workType "article" @default.