Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097651427> ?p ?o ?g. }
- W3097651427 endingPage "199" @default.
- W3097651427 startingPage "185" @default.
- W3097651427 abstract "Sparse discriminative projection learning has attracted much attention due to its good performance in recognition tasks. In this article, a framework called generalized embedding regression (GER) is proposed, which can simultaneously perform low-dimensional embedding and sparse projection learning in a joint objective function with a generalized orthogonal constraint. Moreover, the label information is integrated into the model to preserve the global structure of data, and a rank constraint is imposed on the regression matrix to explore the underlying correlation structure of classes. Theoretical analysis shows that GER can obtain the same or approximate solution as some related methods with special settings. By utilizing this framework as a general platform, we design a novel supervised feature extraction approach called jointly sparse embedding regression (JSER). In JSER, we construct an intrinsic graph to characterize the intraclass similarity and a penalty graph to indicate the interclass separability. Then, the penalty graph Laplacian is used as the constraint matrix in the generalized orthogonal constraint to deal with interclass marginal points. Moreover, the L2,1 -norm is imposed on the regression terms for robustness to outliers and data's variations and the regularization term for jointly sparse projection learning, leading to interesting semantic interpretability. An effective iterative algorithm is elaborately designed to solve the optimization problem of JSER. Theoretically, we prove that the subproblem of JSER is essentially an unbalanced Procrustes problem and can be solved iteratively. The convergence of the designed algorithm is also proved. Experimental results on six well-known data sets indicate the competitive performance and latent properties of JSER." @default.
- W3097651427 created "2020-11-09" @default.
- W3097651427 creator A5008405013 @default.
- W3097651427 creator A5019313200 @default.
- W3097651427 creator A5043352718 @default.
- W3097651427 creator A5060774236 @default.
- W3097651427 creator A5068442919 @default.
- W3097651427 creator A5079034661 @default.
- W3097651427 date "2022-01-01" @default.
- W3097651427 modified "2023-10-16" @default.
- W3097651427 title "Generalized Embedding Regression: A Framework for Supervised Feature Extraction" @default.
- W3097651427 cites W1870661746 @default.
- W3097651427 cites W1975900269 @default.
- W3097651427 cites W1988026710 @default.
- W3097651427 cites W1996232089 @default.
- W3097651427 cites W2001141328 @default.
- W3097651427 cites W2006475033 @default.
- W3097651427 cites W2022463363 @default.
- W3097651427 cites W2023512014 @default.
- W3097651427 cites W2024194293 @default.
- W3097651427 cites W2027717478 @default.
- W3097651427 cites W2033419168 @default.
- W3097651427 cites W2036926179 @default.
- W3097651427 cites W2041785029 @default.
- W3097651427 cites W2043080228 @default.
- W3097651427 cites W2052059892 @default.
- W3097651427 cites W2053186076 @default.
- W3097651427 cites W2057069782 @default.
- W3097651427 cites W2076363162 @default.
- W3097651427 cites W2079598971 @default.
- W3097651427 cites W2097308346 @default.
- W3097651427 cites W2104294146 @default.
- W3097651427 cites W2111427896 @default.
- W3097651427 cites W2112737239 @default.
- W3097651427 cites W2117553576 @default.
- W3097651427 cites W2121647436 @default.
- W3097651427 cites W2122825543 @default.
- W3097651427 cites W2125778906 @default.
- W3097651427 cites W2128873747 @default.
- W3097651427 cites W2138451337 @default.
- W3097651427 cites W2155145150 @default.
- W3097651427 cites W2156142937 @default.
- W3097651427 cites W2163939328 @default.
- W3097651427 cites W2168901348 @default.
- W3097651427 cites W2202025056 @default.
- W3097651427 cites W2297991835 @default.
- W3097651427 cites W2327795403 @default.
- W3097651427 cites W2339611261 @default.
- W3097651427 cites W2464913182 @default.
- W3097651427 cites W2613722790 @default.
- W3097651427 cites W2763163816 @default.
- W3097651427 cites W2793931619 @default.
- W3097651427 cites W3148981562 @default.
- W3097651427 doi "https://doi.org/10.1109/tnnls.2020.3027602" @default.
- W3097651427 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33147149" @default.
- W3097651427 hasPublicationYear "2022" @default.
- W3097651427 type Work @default.
- W3097651427 sameAs 3097651427 @default.
- W3097651427 citedByCount "9" @default.
- W3097651427 countsByYear W30976514272021 @default.
- W3097651427 countsByYear W30976514272022 @default.
- W3097651427 countsByYear W30976514272023 @default.
- W3097651427 crossrefType "journal-article" @default.
- W3097651427 hasAuthorship W3097651427A5008405013 @default.
- W3097651427 hasAuthorship W3097651427A5019313200 @default.
- W3097651427 hasAuthorship W3097651427A5043352718 @default.
- W3097651427 hasAuthorship W3097651427A5060774236 @default.
- W3097651427 hasAuthorship W3097651427A5068442919 @default.
- W3097651427 hasAuthorship W3097651427A5079034661 @default.
- W3097651427 hasConcept C11413529 @default.
- W3097651427 hasConcept C126255220 @default.
- W3097651427 hasConcept C153180895 @default.
- W3097651427 hasConcept C154945302 @default.
- W3097651427 hasConcept C2781067378 @default.
- W3097651427 hasConcept C33923547 @default.
- W3097651427 hasConcept C41008148 @default.
- W3097651427 hasConcept C41608201 @default.
- W3097651427 hasConcept C70518039 @default.
- W3097651427 hasConceptScore W3097651427C11413529 @default.
- W3097651427 hasConceptScore W3097651427C126255220 @default.
- W3097651427 hasConceptScore W3097651427C153180895 @default.
- W3097651427 hasConceptScore W3097651427C154945302 @default.
- W3097651427 hasConceptScore W3097651427C2781067378 @default.
- W3097651427 hasConceptScore W3097651427C33923547 @default.
- W3097651427 hasConceptScore W3097651427C41008148 @default.
- W3097651427 hasConceptScore W3097651427C41608201 @default.
- W3097651427 hasConceptScore W3097651427C70518039 @default.
- W3097651427 hasFunder F4320321001 @default.
- W3097651427 hasFunder F4320321921 @default.
- W3097651427 hasFunder F4320329174 @default.
- W3097651427 hasIssue "1" @default.
- W3097651427 hasLocation W30976514271 @default.
- W3097651427 hasLocation W30976514272 @default.
- W3097651427 hasOpenAccess W3097651427 @default.
- W3097651427 hasPrimaryLocation W30976514271 @default.
- W3097651427 hasRelatedWork W2066259560 @default.
- W3097651427 hasRelatedWork W2355203151 @default.
- W3097651427 hasRelatedWork W2397208740 @default.