Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097654316> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W3097654316 abstract "Autonomous vehicle driving systems face the challenge of providing safe, feasible and human-like driving policies. The traditional modular approach involves a search-based or optimization-based motion planning followed by a feedback model-based controller. This may prove to be inadequate due to model uncertainties, limited computation time and difficulties in incorporating personalized and natural behaviour. The more recent end-to-end approach aims at overcoming these issues by learning from real drivers' data a policy to map from sensor data to controls using deep learning. Although being attractive by its simplicity, it also shows some drawbacks such as sample inefficiency and difficulties in validation and interpretability. The thesis presents mid-to-mid approaches attempting to exploit the best of both worlds, combining machine learning-based and model-based control into supervised and imitation learning frameworks that mimic expert driving behaviour from demonstrations while guaranteeing safety. To do so, the learned driving policies are used as guidance for model-based feedback control. In order to obtain realistic demonstrations, the training data comes from high-fidelity simulations of vehicle dynamics and advanced algorithms such as Model Predictive Control. Neural networks trained with supervised learning are shown to be viable as trajectory planners and feedforward controllers in the domain of time-finite safety-critical maneuvers. Imitation learning, with online data augmentation, is rather employed for sequential planning of standard driving trajectories. For this purpose, a smooth spline-based motion planning represents the policy provided by a constrained neural network exploiting the convex hull property of B-splines to enhance safety and reduce training time." @default.
- W3097654316 created "2020-11-09" @default.
- W3097654316 creator A5061690446 @default.
- W3097654316 date "2019-12-18" @default.
- W3097654316 modified "2023-09-27" @default.
- W3097654316 title "Supervised and Imitation Learning in Autonomous Vehicle Driving" @default.
- W3097654316 hasPublicationYear "2019" @default.
- W3097654316 type Work @default.
- W3097654316 sameAs 3097654316 @default.
- W3097654316 citedByCount "0" @default.
- W3097654316 crossrefType "journal-article" @default.
- W3097654316 hasAuthorship W3097654316A5061690446 @default.
- W3097654316 hasConcept C119857082 @default.
- W3097654316 hasConcept C136389625 @default.
- W3097654316 hasConcept C154945302 @default.
- W3097654316 hasConcept C2781067378 @default.
- W3097654316 hasConcept C41008148 @default.
- W3097654316 hasConcept C50644808 @default.
- W3097654316 hasConcept C97541855 @default.
- W3097654316 hasConceptScore W3097654316C119857082 @default.
- W3097654316 hasConceptScore W3097654316C136389625 @default.
- W3097654316 hasConceptScore W3097654316C154945302 @default.
- W3097654316 hasConceptScore W3097654316C2781067378 @default.
- W3097654316 hasConceptScore W3097654316C41008148 @default.
- W3097654316 hasConceptScore W3097654316C50644808 @default.
- W3097654316 hasConceptScore W3097654316C97541855 @default.
- W3097654316 hasLocation W30976543161 @default.
- W3097654316 hasOpenAccess W3097654316 @default.
- W3097654316 hasPrimaryLocation W30976543161 @default.
- W3097654316 hasRelatedWork W1555368087 @default.
- W3097654316 hasRelatedWork W2149738224 @default.
- W3097654316 hasRelatedWork W2528734395 @default.
- W3097654316 hasRelatedWork W2626860042 @default.
- W3097654316 hasRelatedWork W2782446262 @default.
- W3097654316 hasRelatedWork W2795341696 @default.
- W3097654316 hasRelatedWork W2910219310 @default.
- W3097654316 hasRelatedWork W2922299896 @default.
- W3097654316 hasRelatedWork W2947525798 @default.
- W3097654316 hasRelatedWork W2964070888 @default.
- W3097654316 hasRelatedWork W2990123902 @default.
- W3097654316 hasRelatedWork W3003777383 @default.
- W3097654316 hasRelatedWork W3033003934 @default.
- W3097654316 hasRelatedWork W3034552332 @default.
- W3097654316 hasRelatedWork W3048811971 @default.
- W3097654316 hasRelatedWork W3089483717 @default.
- W3097654316 hasRelatedWork W3129896193 @default.
- W3097654316 hasRelatedWork W3133143524 @default.
- W3097654316 hasRelatedWork W3205195733 @default.
- W3097654316 hasRelatedWork W3214492058 @default.
- W3097654316 isParatext "false" @default.
- W3097654316 isRetracted "false" @default.
- W3097654316 magId "3097654316" @default.
- W3097654316 workType "article" @default.