Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097716063> ?p ?o ?g. }
- W3097716063 abstract "We propose a tomographic protocol for estimating any $k$-body reduced density matrix ($k$-RDM) of an $n$-mode fermionic state, a ubiquitous step in near-term quantum algorithms for simulating many-body physics, chemistry, and materials. Our approach extends the framework of classical shadows, a randomized approach to learning a collection of quantum-state properties, to the fermionic setting. Our sampling protocol uses randomized measurement settings generated by a discrete group of fermionic Gaussian unitaries, implementable with linear-depth circuits. We prove that estimating all $k$-RDM elements to additive precision $ϵ$ requires on the order of $(genfrac{}{}{0ex}{}{n}{k}){k}^{3/2}mathrm{log}(n)/{ϵ}^{2}$ repeated state preparations, which is optimal up to the logarithmic factor. Furthermore, numerical calculations show that our protocol offers a substantial improvement in constant overheads for $kensuremath{ge}2$, as compared to prior deterministic strategies. We also adapt our method to particle-number symmetry, wherein the additional circuit depth may be halved at the cost of roughly 2--5 times more repetitions." @default.
- W3097716063 created "2020-11-09" @default.
- W3097716063 creator A5049281132 @default.
- W3097716063 creator A5052764149 @default.
- W3097716063 creator A5085372862 @default.
- W3097716063 date "2021-09-09" @default.
- W3097716063 modified "2023-10-13" @default.
- W3097716063 title "Fermionic Partial Tomography via Classical Shadows" @default.
- W3097716063 cites W1530936416 @default.
- W3097716063 cites W1663839511 @default.
- W3097716063 cites W1670636041 @default.
- W3097716063 cites W1860626550 @default.
- W3097716063 cites W2000280957 @default.
- W3097716063 cites W2023403730 @default.
- W3097716063 cites W2023789062 @default.
- W3097716063 cites W2027003240 @default.
- W3097716063 cites W2033813118 @default.
- W3097716063 cites W2034775738 @default.
- W3097716063 cites W2037814692 @default.
- W3097716063 cites W2052146120 @default.
- W3097716063 cites W2052891002 @default.
- W3097716063 cites W2072105247 @default.
- W3097716063 cites W2113906175 @default.
- W3097716063 cites W2114600892 @default.
- W3097716063 cites W2135246499 @default.
- W3097716063 cites W2161685427 @default.
- W3097716063 cites W2167110831 @default.
- W3097716063 cites W2254754114 @default.
- W3097716063 cites W2257937122 @default.
- W3097716063 cites W2297918601 @default.
- W3097716063 cites W2329136900 @default.
- W3097716063 cites W2580426609 @default.
- W3097716063 cites W2606799882 @default.
- W3097716063 cites W2613386458 @default.
- W3097716063 cites W2755255888 @default.
- W3097716063 cites W2769838435 @default.
- W3097716063 cites W2781738013 @default.
- W3097716063 cites W2790766600 @default.
- W3097716063 cites W2888094667 @default.
- W3097716063 cites W2898129650 @default.
- W3097716063 cites W2907827190 @default.
- W3097716063 cites W2923481626 @default.
- W3097716063 cites W2949453985 @default.
- W3097716063 cites W2954292307 @default.
- W3097716063 cites W2954369586 @default.
- W3097716063 cites W2963212486 @default.
- W3097716063 cites W2964421692 @default.
- W3097716063 cites W2965325670 @default.
- W3097716063 cites W2966171903 @default.
- W3097716063 cites W2969454111 @default.
- W3097716063 cites W2989336327 @default.
- W3097716063 cites W2989573127 @default.
- W3097716063 cites W2990961515 @default.
- W3097716063 cites W2999682805 @default.
- W3097716063 cites W2999795927 @default.
- W3097716063 cites W3006980307 @default.
- W3097716063 cites W3008665348 @default.
- W3097716063 cites W3011472404 @default.
- W3097716063 cites W3015520254 @default.
- W3097716063 cites W3018348740 @default.
- W3097716063 cites W3040455916 @default.
- W3097716063 cites W3048881508 @default.
- W3097716063 cites W3084134481 @default.
- W3097716063 cites W3097997666 @default.
- W3097716063 cites W3098536263 @default.
- W3097716063 cites W3098639868 @default.
- W3097716063 cites W3099621369 @default.
- W3097716063 cites W3099928575 @default.
- W3097716063 cites W3101479050 @default.
- W3097716063 cites W3101548872 @default.
- W3097716063 cites W3101890556 @default.
- W3097716063 cites W3103272234 @default.
- W3097716063 cites W3103438630 @default.
- W3097716063 cites W3103870741 @default.
- W3097716063 cites W3104428150 @default.
- W3097716063 cites W3104941540 @default.
- W3097716063 cites W3105273233 @default.
- W3097716063 cites W3105530994 @default.
- W3097716063 cites W3105532889 @default.
- W3097716063 cites W3106040086 @default.
- W3097716063 cites W3106047133 @default.
- W3097716063 cites W3106077985 @default.
- W3097716063 cites W3106399911 @default.
- W3097716063 cites W3113541475 @default.
- W3097716063 cites W3129110052 @default.
- W3097716063 cites W3132125399 @default.
- W3097716063 cites W3136719745 @default.
- W3097716063 cites W3137962867 @default.
- W3097716063 cites W3150000293 @default.
- W3097716063 cites W3157041929 @default.
- W3097716063 cites W3191446915 @default.
- W3097716063 cites W4245577611 @default.
- W3097716063 cites W4251659063 @default.
- W3097716063 doi "https://doi.org/10.1103/physrevlett.127.110504" @default.
- W3097716063 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34558940" @default.
- W3097716063 hasPublicationYear "2021" @default.
- W3097716063 type Work @default.
- W3097716063 sameAs 3097716063 @default.
- W3097716063 citedByCount "45" @default.
- W3097716063 countsByYear W30977160632021 @default.