Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097737107> ?p ?o ?g. }
- W3097737107 endingPage "2722" @default.
- W3097737107 startingPage "2701" @default.
- W3097737107 abstract "Abstract. Seasonal forecasts have the potential to substantially improve water management particularly in water-scarce regions. However, global seasonal forecasts are usually not directly applicable as they are provided at coarse spatial resolutions of at best 36 km and suffer from model biases and drifts. In this study, we therefore apply a bias-correction and spatial-disaggregation (BCSD) approach to seasonal precipitation, temperature and radiation forecasts of the latest long-range seasonal forecasting system SEAS5 of the European Centre for Medium-Range Weather Forecasts (ECMWF). As reference we use data from the ERA5-Land offline land surface rerun of the latest ECMWF reanalysis ERA5. Thereby, we correct for model biases and drifts and improve the spatial resolution from 36 km to 0.1∘. This is performed for example over four predominately semi-arid study domains across the world, which include the river basins of the Karun (Iran), the São Francisco River (Brazil), the Tekeze–Atbara river and Blue Nile (Sudan, Ethiopia and Eritrea), and the Catamayo–Chira river (Ecuador and Peru). Compared against ERA5-Land, the bias-corrected and spatially disaggregated forecasts have a higher spatial resolution and show reduced biases and better agreement of spatial patterns than the raw forecasts as well as remarkably reduced lead-dependent drift effects. But our analysis also shows that computing monthly averages from daily bias-corrected forecasts particularly during periods with strong temporal climate gradients or heteroscedasticity can lead to remaining biases especially in the lowest- and highest-lead forecasts. Our SEAS5 BCSD forecasts cover the whole (re-)forecast period from 1981 to 2019 and include bias-corrected and spatially disaggregated daily and monthly ensemble forecasts for precipitation, average, minimum, and maximum temperature as well as for shortwave radiation from the issue date to the next 215 d and 6 months, respectively. This sums up to more than 100 000 forecasted days for each of the 25 (until the year 2016) and 51 (from the year 2017) ensemble members and each of the five analyzed variables. The full repository is made freely available to the public via the World Data Centre for Climate at https://doi.org/10.26050/WDCC/SaWaM_D01_SEAS5_BCSD (Domain D01, Karun Basin (Iran), Lorenz et al., 2020b), https://doi.org/10.26050/WDCC/SaWaM_D02_SEAS5_BCSD (Domain D02: São Francisco Basin (Brazil), Lorenz et al., 2020c), https://doi.org/10.26050/WDCC/SaWaM_D03_SEAS5_BCSD (Domain D03: basins of the Tekeze–Atbara and Blue Nile (Ethiopia, Eritrea, Sudan), Lorenz et al., 2020d), and https://doi.org/10.26050/WDCC/SaWaM_D04_SEAS5_BCSD (Domain D04: Catamayo–Chira Basin (Ecuador, Peru), Lorenz et al., 2020a). It is currently the first publicly available daily high-resolution seasonal forecast product that covers multiple regions and variables for such a long period. It hence provides a unique test bed for evaluating the performance of seasonal forecasts over semi-arid regions and as driving data for hydrological, ecosystem or climate impact models. Therefore, our forecasts provide a crucial contribution for the disaster preparedness and, finally, climate proofing of the regional water management in climatically sensitive regions." @default.
- W3097737107 created "2020-11-09" @default.
- W3097737107 creator A5015499505 @default.
- W3097737107 creator A5018662918 @default.
- W3097737107 creator A5027942866 @default.
- W3097737107 creator A5067303922 @default.
- W3097737107 date "2021-06-15" @default.
- W3097737107 modified "2023-10-10" @default.
- W3097737107 title "Bias-corrected and spatially disaggregated seasonal forecasts: a long-term reference forecast product for the water sector in semi-arid regions" @default.
- W3097737107 cites W1659630010 @default.
- W3097737107 cites W1861739753 @default.
- W3097737107 cites W1917061602 @default.
- W3097737107 cites W1970471945 @default.
- W3097737107 cites W1970669626 @default.
- W3097737107 cites W1983708372 @default.
- W3097737107 cites W1992746051 @default.
- W3097737107 cites W1999783660 @default.
- W3097737107 cites W2001704181 @default.
- W3097737107 cites W2008669846 @default.
- W3097737107 cites W2020082775 @default.
- W3097737107 cites W2028100689 @default.
- W3097737107 cites W2028841012 @default.
- W3097737107 cites W2029449639 @default.
- W3097737107 cites W2049285655 @default.
- W3097737107 cites W2053061675 @default.
- W3097737107 cites W2053907743 @default.
- W3097737107 cites W2053974573 @default.
- W3097737107 cites W2064338367 @default.
- W3097737107 cites W2067232514 @default.
- W3097737107 cites W2069470175 @default.
- W3097737107 cites W2073241381 @default.
- W3097737107 cites W2076132436 @default.
- W3097737107 cites W2079000795 @default.
- W3097737107 cites W2094156501 @default.
- W3097737107 cites W2094554000 @default.
- W3097737107 cites W2097208041 @default.
- W3097737107 cites W2104735855 @default.
- W3097737107 cites W2105729095 @default.
- W3097737107 cites W2116196493 @default.
- W3097737107 cites W2124476392 @default.
- W3097737107 cites W2131052750 @default.
- W3097737107 cites W2137518784 @default.
- W3097737107 cites W2150633688 @default.
- W3097737107 cites W2158941266 @default.
- W3097737107 cites W2159400622 @default.
- W3097737107 cites W2159835749 @default.
- W3097737107 cites W2161022906 @default.
- W3097737107 cites W2163145639 @default.
- W3097737107 cites W2178242555 @default.
- W3097737107 cites W2180503217 @default.
- W3097737107 cites W2195648515 @default.
- W3097737107 cites W2201720007 @default.
- W3097737107 cites W2282277244 @default.
- W3097737107 cites W2580637162 @default.
- W3097737107 cites W2597689547 @default.
- W3097737107 cites W2604258022 @default.
- W3097737107 cites W2604660478 @default.
- W3097737107 cites W2610217940 @default.
- W3097737107 cites W2626116453 @default.
- W3097737107 cites W2742723294 @default.
- W3097737107 cites W2761787958 @default.
- W3097737107 cites W2764046839 @default.
- W3097737107 cites W2767245453 @default.
- W3097737107 cites W2783642335 @default.
- W3097737107 cites W2792685094 @default.
- W3097737107 cites W2792914113 @default.
- W3097737107 cites W2793345439 @default.
- W3097737107 cites W2795397383 @default.
- W3097737107 cites W2818624268 @default.
- W3097737107 cites W2889852608 @default.
- W3097737107 cites W2895279794 @default.
- W3097737107 cites W2897436497 @default.
- W3097737107 cites W2900927743 @default.
- W3097737107 cites W2903990375 @default.
- W3097737107 cites W2911919625 @default.
- W3097737107 cites W2921271897 @default.
- W3097737107 cites W2923342716 @default.
- W3097737107 cites W2944141021 @default.
- W3097737107 cites W2953096977 @default.
- W3097737107 cites W2964368166 @default.
- W3097737107 cites W2968995990 @default.
- W3097737107 cites W2994194851 @default.
- W3097737107 cites W3004274815 @default.
- W3097737107 cites W3023260061 @default.
- W3097737107 cites W3042750449 @default.
- W3097737107 cites W3093318048 @default.
- W3097737107 cites W34678004 @default.
- W3097737107 doi "https://doi.org/10.5194/essd-13-2701-2021" @default.
- W3097737107 hasPublicationYear "2021" @default.
- W3097737107 type Work @default.
- W3097737107 sameAs 3097737107 @default.
- W3097737107 citedByCount "15" @default.
- W3097737107 countsByYear W30977371072021 @default.
- W3097737107 countsByYear W30977371072022 @default.
- W3097737107 countsByYear W30977371072023 @default.
- W3097737107 crossrefType "journal-article" @default.
- W3097737107 hasAuthorship W3097737107A5015499505 @default.
- W3097737107 hasAuthorship W3097737107A5018662918 @default.