Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097742487> ?p ?o ?g. }
- W3097742487 endingPage "22" @default.
- W3097742487 startingPage "1" @default.
- W3097742487 abstract "The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized support vector regression model with a genetic algorithm (SVR-GA) over the other ML forecasting models for monthly river flow forecasting using 90%–10% data division. In addition, it was found to improve the accuracy in forecasting high flow events. The unique architecture of developed SVR-GA due to the ability of the GA optimizer to tune the internal parameters of the SVR model provides a robust learning process. This has made it more efficient in forecasting stochastic river flow behaviour compared to the other developed hybrid models." @default.
- W3097742487 created "2020-11-09" @default.
- W3097742487 creator A5016408387 @default.
- W3097742487 creator A5018153583 @default.
- W3097742487 creator A5021159901 @default.
- W3097742487 creator A5062509638 @default.
- W3097742487 creator A5070829177 @default.
- W3097742487 creator A5075522073 @default.
- W3097742487 creator A5083515355 @default.
- W3097742487 date "2020-10-29" @default.
- W3097742487 modified "2023-10-12" @default.
- W3097742487 title "Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting" @default.
- W3097742487 cites W1463234159 @default.
- W3097742487 cites W1498436455 @default.
- W3097742487 cites W1563088657 @default.
- W3097742487 cites W1884259422 @default.
- W3097742487 cites W1971632908 @default.
- W3097742487 cites W1985479415 @default.
- W3097742487 cites W2004041476 @default.
- W3097742487 cites W2005131930 @default.
- W3097742487 cites W2027386095 @default.
- W3097742487 cites W2035222601 @default.
- W3097742487 cites W2037460094 @default.
- W3097742487 cites W2062087947 @default.
- W3097742487 cites W2093824915 @default.
- W3097742487 cites W2095909648 @default.
- W3097742487 cites W2108750696 @default.
- W3097742487 cites W2129462366 @default.
- W3097742487 cites W2132424470 @default.
- W3097742487 cites W2137741445 @default.
- W3097742487 cites W2153272791 @default.
- W3097742487 cites W2169976806 @default.
- W3097742487 cites W2318515285 @default.
- W3097742487 cites W2327973758 @default.
- W3097742487 cites W2400066469 @default.
- W3097742487 cites W2472474259 @default.
- W3097742487 cites W2591789574 @default.
- W3097742487 cites W2758887415 @default.
- W3097742487 cites W2766736793 @default.
- W3097742487 cites W2796862151 @default.
- W3097742487 cites W2896144795 @default.
- W3097742487 cites W2897565907 @default.
- W3097742487 cites W2897601283 @default.
- W3097742487 cites W2900233077 @default.
- W3097742487 cites W2904994387 @default.
- W3097742487 cites W2905485021 @default.
- W3097742487 cites W2911964244 @default.
- W3097742487 cites W2920794465 @default.
- W3097742487 cites W2920998881 @default.
- W3097742487 cites W2938010697 @default.
- W3097742487 cites W2947614609 @default.
- W3097742487 cites W2948700797 @default.
- W3097742487 cites W2949875821 @default.
- W3097742487 cites W2991097100 @default.
- W3097742487 cites W2994422074 @default.
- W3097742487 cites W3004004790 @default.
- W3097742487 cites W3004203398 @default.
- W3097742487 cites W3004343334 @default.
- W3097742487 cites W3006671182 @default.
- W3097742487 cites W3007397274 @default.
- W3097742487 cites W3007685425 @default.
- W3097742487 cites W3007705148 @default.
- W3097742487 cites W3007782869 @default.
- W3097742487 cites W3008062478 @default.
- W3097742487 cites W3011125887 @default.
- W3097742487 cites W3013631219 @default.
- W3097742487 cites W3014212386 @default.
- W3097742487 cites W3016106855 @default.
- W3097742487 cites W3017270259 @default.
- W3097742487 cites W3019703102 @default.
- W3097742487 cites W3026995479 @default.
- W3097742487 cites W3027953868 @default.
- W3097742487 cites W3033820437 @default.
- W3097742487 cites W3036136044 @default.
- W3097742487 cites W3037441638 @default.
- W3097742487 cites W3041909991 @default.
- W3097742487 cites W3044684479 @default.
- W3097742487 cites W3049144674 @default.
- W3097742487 cites W3106370744 @default.
- W3097742487 cites W334214521 @default.
- W3097742487 cites W4242878065 @default.
- W3097742487 cites W4246020459 @default.
- W3097742487 doi "https://doi.org/10.1155/2020/8844367" @default.
- W3097742487 hasPublicationYear "2020" @default.
- W3097742487 type Work @default.
- W3097742487 sameAs 3097742487 @default.
- W3097742487 citedByCount "17" @default.
- W3097742487 countsByYear W30977424872021 @default.
- W3097742487 countsByYear W30977424872022 @default.
- W3097742487 countsByYear W30977424872023 @default.
- W3097742487 crossrefType "journal-article" @default.
- W3097742487 hasAuthorship W3097742487A5016408387 @default.
- W3097742487 hasAuthorship W3097742487A5018153583 @default.
- W3097742487 hasAuthorship W3097742487A5021159901 @default.
- W3097742487 hasAuthorship W3097742487A5062509638 @default.
- W3097742487 hasAuthorship W3097742487A5070829177 @default.
- W3097742487 hasAuthorship W3097742487A5075522073 @default.
- W3097742487 hasAuthorship W3097742487A5083515355 @default.