Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097743819> ?p ?o ?g. }
- W3097743819 endingPage "169" @default.
- W3097743819 startingPage "157" @default.
- W3097743819 abstract "Generative adversarial network (GAN) has achieved great success in many fields such as computer vision, speech processing, and natural language processing, because of its powerful capabilities for generating realistic samples. In this paper, we introduce GAN into the field of electromagnetic signal classification (ESC). ESC plays an important role in both military and civilian domains. However, in many specific scenarios, we can't obtain enough labeled data, which cause failure of deep learning methods because they are easy to fall into over-fitting. Fortunately, semi-supervised learning (SSL) can leverage the large amount of unlabeled data to enhance the classification performance of classifiers, especially in scenarios with limited amount of labeled data. We present an SSL framework by incorporating GAN, which can directly process the raw in-phase and quadrature (IQ) signal data. According to the characteristics of the electromagnetic signal, we propose a weighted loss function, leading to an effective classifier to realize the end-to-end classification of the electromagnetic signal. We validate the proposed method on both public RML2016.04c dataset and real-world Aircraft Communications Addressing and Reporting System (ACARS) signal dataset. Extensive experimental results show that the proposed framework obtains a significant increase in classification accuracy compared with the state-of-the-art studies." @default.
- W3097743819 created "2020-11-09" @default.
- W3097743819 creator A5035458987 @default.
- W3097743819 creator A5047444184 @default.
- W3097743819 creator A5050630882 @default.
- W3097743819 creator A5067210108 @default.
- W3097743819 creator A5078159594 @default.
- W3097743819 creator A5086362637 @default.
- W3097743819 date "2020-10-01" @default.
- W3097743819 modified "2023-10-09" @default.
- W3097743819 title "Generative adversarial network-based electromagnetic signal classification: A semi-supervised learning framework" @default.
- W3097743819 cites W1998656041 @default.
- W3097743819 cites W2012080288 @default.
- W3097743819 cites W2092904426 @default.
- W3097743819 cites W2136922672 @default.
- W3097743819 cites W2530324083 @default.
- W3097743819 cites W2541876556 @default.
- W3097743819 cites W2543451298 @default.
- W3097743819 cites W2734408173 @default.
- W3097743819 cites W2765852770 @default.
- W3097743819 cites W2772387500 @default.
- W3097743819 cites W2884089434 @default.
- W3097743819 cites W2893903145 @default.
- W3097743819 cites W2954992643 @default.
- W3097743819 cites W2963809753 @default.
- W3097743819 cites W2966483796 @default.
- W3097743819 cites W2993027758 @default.
- W3097743819 cites W3010867338 @default.
- W3097743819 cites W3019222724 @default.
- W3097743819 doi "https://doi.org/10.23919/jcc.2020.10.011" @default.
- W3097743819 hasPublicationYear "2020" @default.
- W3097743819 type Work @default.
- W3097743819 sameAs 3097743819 @default.
- W3097743819 citedByCount "15" @default.
- W3097743819 countsByYear W30977438192021 @default.
- W3097743819 countsByYear W30977438192022 @default.
- W3097743819 countsByYear W30977438192023 @default.
- W3097743819 crossrefType "journal-article" @default.
- W3097743819 hasAuthorship W3097743819A5035458987 @default.
- W3097743819 hasAuthorship W3097743819A5047444184 @default.
- W3097743819 hasAuthorship W3097743819A5050630882 @default.
- W3097743819 hasAuthorship W3097743819A5067210108 @default.
- W3097743819 hasAuthorship W3097743819A5078159594 @default.
- W3097743819 hasAuthorship W3097743819A5086362637 @default.
- W3097743819 hasConcept C104267543 @default.
- W3097743819 hasConcept C108583219 @default.
- W3097743819 hasConcept C119857082 @default.
- W3097743819 hasConcept C124101348 @default.
- W3097743819 hasConcept C132964779 @default.
- W3097743819 hasConcept C136389625 @default.
- W3097743819 hasConcept C153083717 @default.
- W3097743819 hasConcept C153180895 @default.
- W3097743819 hasConcept C154945302 @default.
- W3097743819 hasConcept C199360897 @default.
- W3097743819 hasConcept C2779843651 @default.
- W3097743819 hasConcept C2988773926 @default.
- W3097743819 hasConcept C39890363 @default.
- W3097743819 hasConcept C41008148 @default.
- W3097743819 hasConcept C50644808 @default.
- W3097743819 hasConcept C554190296 @default.
- W3097743819 hasConcept C76155785 @default.
- W3097743819 hasConcept C95623464 @default.
- W3097743819 hasConceptScore W3097743819C104267543 @default.
- W3097743819 hasConceptScore W3097743819C108583219 @default.
- W3097743819 hasConceptScore W3097743819C119857082 @default.
- W3097743819 hasConceptScore W3097743819C124101348 @default.
- W3097743819 hasConceptScore W3097743819C132964779 @default.
- W3097743819 hasConceptScore W3097743819C136389625 @default.
- W3097743819 hasConceptScore W3097743819C153083717 @default.
- W3097743819 hasConceptScore W3097743819C153180895 @default.
- W3097743819 hasConceptScore W3097743819C154945302 @default.
- W3097743819 hasConceptScore W3097743819C199360897 @default.
- W3097743819 hasConceptScore W3097743819C2779843651 @default.
- W3097743819 hasConceptScore W3097743819C2988773926 @default.
- W3097743819 hasConceptScore W3097743819C39890363 @default.
- W3097743819 hasConceptScore W3097743819C41008148 @default.
- W3097743819 hasConceptScore W3097743819C50644808 @default.
- W3097743819 hasConceptScore W3097743819C554190296 @default.
- W3097743819 hasConceptScore W3097743819C76155785 @default.
- W3097743819 hasConceptScore W3097743819C95623464 @default.
- W3097743819 hasIssue "10" @default.
- W3097743819 hasLocation W30977438191 @default.
- W3097743819 hasOpenAccess W3097743819 @default.
- W3097743819 hasPrimaryLocation W30977438191 @default.
- W3097743819 hasRelatedWork W2845413374 @default.
- W3097743819 hasRelatedWork W2888032422 @default.
- W3097743819 hasRelatedWork W2972144487 @default.
- W3097743819 hasRelatedWork W2996316059 @default.
- W3097743819 hasRelatedWork W3005996785 @default.
- W3097743819 hasRelatedWork W3178813832 @default.
- W3097743819 hasRelatedWork W4226298148 @default.
- W3097743819 hasRelatedWork W4297411772 @default.
- W3097743819 hasRelatedWork W4327672426 @default.
- W3097743819 hasRelatedWork W4377980832 @default.
- W3097743819 hasVolume "17" @default.
- W3097743819 isParatext "false" @default.
- W3097743819 isRetracted "false" @default.
- W3097743819 magId "3097743819" @default.