Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097744168> ?p ?o ?g. }
- W3097744168 endingPage "1876" @default.
- W3097744168 startingPage "1876" @default.
- W3097744168 abstract "Travel time data is an important factor for evaluating the performance of a public transport system. In terms of time and space within the nature of uncertainty, bus travel time is dynamic and flexible. Since the change of traffic status is periodic, contagious or even sudden, the changing mechanism of that is a hidden mode. Therefore, bus travel time prediction is a challenging problem in intelligent transportation system (ITS). Allowing for a large amount of traffic data can be collected at present but lack of precisely-conducting, it is still worth exploring how to extract feature sets that can accurately predict bus travel time from these data. Hence, a feature extraction framework based on the deep learning models were developed to reflect the state of bus travel time. First, the study introduced different historical stages of bus signaling time, taxi speed, the stop identity (ID) of spatial characteristics, and real-time possible arrival time, signified by fourteen spatiotemporal characteristic values. Then, an embedding network is proposed to leverage a wide and deep structure to mate the spatial and temporal data. In order to meet the temporal dependence requirements, an attention mechanism for a Recurrent Neural Network (RNN) was designed in this research in order to capture the temporal information. Finally, a Deep Neural Networks (DNN) was implemented in this research in order to achieve the dynamic bus travel time prediction. Two case studies of Guangzhou and Shenzhen were tested. The results showed that the performance of the algorithm was more efficient than that of the traditional machine-learning model and promoted by 4.82% compared to the deep neural network applied to the initial feature space. Moreover, the study visualized the weighted cost of attention on the bus’s travel time features during a certain running state. Therefore, the study demonstrated the proposed model enabled to understand the characteristic data of transit travel time with visualization." @default.
- W3097744168 created "2020-11-09" @default.
- W3097744168 creator A5008984115 @default.
- W3097744168 creator A5011540763 @default.
- W3097744168 creator A5034504231 @default.
- W3097744168 creator A5042007093 @default.
- W3097744168 creator A5045070671 @default.
- W3097744168 creator A5045193479 @default.
- W3097744168 creator A5081982909 @default.
- W3097744168 date "2020-11-08" @default.
- W3097744168 modified "2023-09-25" @default.
- W3097744168 title "Bus Dynamic Travel Time Prediction: Using a Deep Feature Extraction Framework Based on RNN and DNN" @default.
- W3097744168 cites W1969291558 @default.
- W3097744168 cites W2009527558 @default.
- W3097744168 cites W2020641160 @default.
- W3097744168 cites W2026184121 @default.
- W3097744168 cites W2028536332 @default.
- W3097744168 cites W2036785686 @default.
- W3097744168 cites W2067950570 @default.
- W3097744168 cites W2083797062 @default.
- W3097744168 cites W2175821123 @default.
- W3097744168 cites W2479611522 @default.
- W3097744168 cites W2522960662 @default.
- W3097744168 cites W2556421247 @default.
- W3097744168 cites W2556487516 @default.
- W3097744168 cites W2564999936 @default.
- W3097744168 cites W2607883279 @default.
- W3097744168 cites W2613331518 @default.
- W3097744168 cites W2733511103 @default.
- W3097744168 cites W2778571179 @default.
- W3097744168 cites W2793820729 @default.
- W3097744168 cites W2799109291 @default.
- W3097744168 cites W2807601763 @default.
- W3097744168 cites W2883073525 @default.
- W3097744168 cites W2890672150 @default.
- W3097744168 cites W2900682747 @default.
- W3097744168 cites W2906257585 @default.
- W3097744168 cites W2912985636 @default.
- W3097744168 cites W2925917994 @default.
- W3097744168 cites W2953543138 @default.
- W3097744168 cites W2960749694 @default.
- W3097744168 cites W2966819461 @default.
- W3097744168 cites W2982196627 @default.
- W3097744168 cites W2982601027 @default.
- W3097744168 cites W4238796079 @default.
- W3097744168 cites W4378589522 @default.
- W3097744168 doi "https://doi.org/10.3390/electronics9111876" @default.
- W3097744168 hasPublicationYear "2020" @default.
- W3097744168 type Work @default.
- W3097744168 sameAs 3097744168 @default.
- W3097744168 citedByCount "16" @default.
- W3097744168 countsByYear W30977441682021 @default.
- W3097744168 countsByYear W30977441682022 @default.
- W3097744168 countsByYear W30977441682023 @default.
- W3097744168 crossrefType "journal-article" @default.
- W3097744168 hasAuthorship W3097744168A5008984115 @default.
- W3097744168 hasAuthorship W3097744168A5011540763 @default.
- W3097744168 hasAuthorship W3097744168A5034504231 @default.
- W3097744168 hasAuthorship W3097744168A5042007093 @default.
- W3097744168 hasAuthorship W3097744168A5045070671 @default.
- W3097744168 hasAuthorship W3097744168A5045193479 @default.
- W3097744168 hasAuthorship W3097744168A5081982909 @default.
- W3097744168 hasBestOaLocation W30977441681 @default.
- W3097744168 hasConcept C108583219 @default.
- W3097744168 hasConcept C119857082 @default.
- W3097744168 hasConcept C124101348 @default.
- W3097744168 hasConcept C127413603 @default.
- W3097744168 hasConcept C147168706 @default.
- W3097744168 hasConcept C153083717 @default.
- W3097744168 hasConcept C154945302 @default.
- W3097744168 hasConcept C22212356 @default.
- W3097744168 hasConcept C41008148 @default.
- W3097744168 hasConcept C47796450 @default.
- W3097744168 hasConcept C50644808 @default.
- W3097744168 hasConcept C52622490 @default.
- W3097744168 hasConcept C539828613 @default.
- W3097744168 hasConcept C79403827 @default.
- W3097744168 hasConceptScore W3097744168C108583219 @default.
- W3097744168 hasConceptScore W3097744168C119857082 @default.
- W3097744168 hasConceptScore W3097744168C124101348 @default.
- W3097744168 hasConceptScore W3097744168C127413603 @default.
- W3097744168 hasConceptScore W3097744168C147168706 @default.
- W3097744168 hasConceptScore W3097744168C153083717 @default.
- W3097744168 hasConceptScore W3097744168C154945302 @default.
- W3097744168 hasConceptScore W3097744168C22212356 @default.
- W3097744168 hasConceptScore W3097744168C41008148 @default.
- W3097744168 hasConceptScore W3097744168C47796450 @default.
- W3097744168 hasConceptScore W3097744168C50644808 @default.
- W3097744168 hasConceptScore W3097744168C52622490 @default.
- W3097744168 hasConceptScore W3097744168C539828613 @default.
- W3097744168 hasConceptScore W3097744168C79403827 @default.
- W3097744168 hasIssue "11" @default.
- W3097744168 hasLocation W30977441681 @default.
- W3097744168 hasOpenAccess W3097744168 @default.
- W3097744168 hasPrimaryLocation W30977441681 @default.
- W3097744168 hasRelatedWork W2384266909 @default.
- W3097744168 hasRelatedWork W2793022090 @default.
- W3097744168 hasRelatedWork W2919358988 @default.