Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097761291> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3097761291 endingPage "6094" @default.
- W3097761291 startingPage "6094" @default.
- W3097761291 abstract "Human movement analysis is very often applied to sport, which has seen great achievements in assessing an athlete’s progress, giving further training tips and in movement recognition. In tennis, there are two basic shots: forehand and backhand, which are performed during all matches and training sessions. Recognition of these movements is important in the quantitative analysis of a tennis game. In this paper, the authors propose using Spatial-Temporal Graph Neural Networks (ST-GCN) to challenge the above task. Recognition of the shots is performed on the basis of images obtained from 3D tennis movements (forehands and backhands) recorded by the Vicon motion capture system (Oxford Metrics Ltd, Oxford, UK), where both the player and the racket were recorded. Two methods of putting data into the ST-GCN network were compared: with and without fuzzying of data. The obtained results confirm that the use of fuzzy input graphs for ST-GCNs is a better tool for recognition of forehand and backhand tennis shots relative to graphs without fuzzy input." @default.
- W3097761291 created "2020-11-09" @default.
- W3097761291 creator A5021207144 @default.
- W3097761291 creator A5088987855 @default.
- W3097761291 creator A5089968607 @default.
- W3097761291 date "2020-10-27" @default.
- W3097761291 modified "2023-09-25" @default.
- W3097761291 title "Learning Three Dimensional Tennis Shots Using Graph Convolutional Networks" @default.
- W3097761291 cites W2166681504 @default.
- W3097761291 cites W2461532701 @default.
- W3097761291 cites W2970776258 @default.
- W3097761291 cites W2972995983 @default.
- W3097761291 cites W2979750740 @default.
- W3097761291 cites W3024963902 @default.
- W3097761291 cites W3040842087 @default.
- W3097761291 cites W4210257598 @default.
- W3097761291 doi "https://doi.org/10.3390/s20216094" @default.
- W3097761291 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7662764" @default.
- W3097761291 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33120904" @default.
- W3097761291 hasPublicationYear "2020" @default.
- W3097761291 type Work @default.
- W3097761291 sameAs 3097761291 @default.
- W3097761291 citedByCount "13" @default.
- W3097761291 countsByYear W30977612912021 @default.
- W3097761291 countsByYear W30977612912022 @default.
- W3097761291 countsByYear W30977612912023 @default.
- W3097761291 crossrefType "journal-article" @default.
- W3097761291 hasAuthorship W3097761291A5021207144 @default.
- W3097761291 hasAuthorship W3097761291A5088987855 @default.
- W3097761291 hasAuthorship W3097761291A5089968607 @default.
- W3097761291 hasBestOaLocation W30977612911 @default.
- W3097761291 hasConcept C107038049 @default.
- W3097761291 hasConcept C127413603 @default.
- W3097761291 hasConcept C132525143 @default.
- W3097761291 hasConcept C138885662 @default.
- W3097761291 hasConcept C154945302 @default.
- W3097761291 hasConcept C201995342 @default.
- W3097761291 hasConcept C2778707667 @default.
- W3097761291 hasConcept C2780226923 @default.
- W3097761291 hasConcept C2780451532 @default.
- W3097761291 hasConcept C31972630 @default.
- W3097761291 hasConcept C41008148 @default.
- W3097761291 hasConcept C65655974 @default.
- W3097761291 hasConcept C78519656 @default.
- W3097761291 hasConcept C80444323 @default.
- W3097761291 hasConcept C81363708 @default.
- W3097761291 hasConceptScore W3097761291C107038049 @default.
- W3097761291 hasConceptScore W3097761291C127413603 @default.
- W3097761291 hasConceptScore W3097761291C132525143 @default.
- W3097761291 hasConceptScore W3097761291C138885662 @default.
- W3097761291 hasConceptScore W3097761291C154945302 @default.
- W3097761291 hasConceptScore W3097761291C201995342 @default.
- W3097761291 hasConceptScore W3097761291C2778707667 @default.
- W3097761291 hasConceptScore W3097761291C2780226923 @default.
- W3097761291 hasConceptScore W3097761291C2780451532 @default.
- W3097761291 hasConceptScore W3097761291C31972630 @default.
- W3097761291 hasConceptScore W3097761291C41008148 @default.
- W3097761291 hasConceptScore W3097761291C65655974 @default.
- W3097761291 hasConceptScore W3097761291C78519656 @default.
- W3097761291 hasConceptScore W3097761291C80444323 @default.
- W3097761291 hasConceptScore W3097761291C81363708 @default.
- W3097761291 hasIssue "21" @default.
- W3097761291 hasLocation W30977612911 @default.
- W3097761291 hasLocation W30977612912 @default.
- W3097761291 hasLocation W30977612913 @default.
- W3097761291 hasOpenAccess W3097761291 @default.
- W3097761291 hasPrimaryLocation W30977612911 @default.
- W3097761291 hasRelatedWork W1891287906 @default.
- W3097761291 hasRelatedWork W1969923398 @default.
- W3097761291 hasRelatedWork W2036807459 @default.
- W3097761291 hasRelatedWork W2285788670 @default.
- W3097761291 hasRelatedWork W2748454020 @default.
- W3097761291 hasRelatedWork W2955938200 @default.
- W3097761291 hasRelatedWork W2963891724 @default.
- W3097761291 hasRelatedWork W2998526951 @default.
- W3097761291 hasRelatedWork W3119610945 @default.
- W3097761291 hasRelatedWork W3181746755 @default.
- W3097761291 hasVolume "20" @default.
- W3097761291 isParatext "false" @default.
- W3097761291 isRetracted "false" @default.
- W3097761291 magId "3097761291" @default.
- W3097761291 workType "article" @default.