Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097777103> ?p ?o ?g. }
- W3097777103 endingPage "1361" @default.
- W3097777103 startingPage "1351" @default.
- W3097777103 abstract "PET measures of amyloid and tau pathologies are powerful biomarkers for the diagnosis and monitoring of Alzheimer's disease (AD). Because cortical regions are close to bone, quantitation accuracy of amyloid and tau PET imaging can be significantly influenced by errors of attenuation correction (AC). This work presents an MR-based AC method that combines deep learning with a novel ultrashort time-to-echo (UTE)/multi-echo Dixon (mUTE) sequence for amyloid and tau imaging.Thirty-five subjects that underwent both 11C-PiB and 18F-MK6240 scans were included in this study. The proposed method was compared with Dixon-based atlas method as well as magnetization-prepared rapid acquisition with gradient echo (MPRAGE)- or Dixon-based deep learning methods. The Dice coefficient and validation loss of the generated pseudo-CT images were used for comparison. PET error images regarding standardized uptake value ratio (SUVR) were quantified through regional and surface analysis to evaluate the final AC accuracy.The Dice coefficients of the deep learning methods based on MPRAGE, Dixon, and mUTE images were 0.84 (0.91), 0.84 (0.92), and 0.87 (0.94) for the whole-brain (above-eye) bone regions, respectively, higher than the atlas method of 0.52 (0.64). The regional SUVR error for the atlas method was around 6%, higher than the regional SUV error. The regional SUV and SUVR errors for all deep learning methods were below 2%, with mUTE-based deep learning method performing the best. As for the surface analysis, the atlas method showed the largest error (> 10%) near vertices inside superior frontal, lateral occipital, superior parietal, and inferior temporal cortices. The mUTE-based deep learning method resulted in the least number of regions with error higher than 1%, with the largest error (> 5%) showing up near the inferior temporal and medial orbitofrontal cortices.Deep learning with mUTE can generate accurate AC for amyloid and tau imaging in PET/MR." @default.
- W3097777103 created "2020-11-09" @default.
- W3097777103 creator A5013691634 @default.
- W3097777103 creator A5034147027 @default.
- W3097777103 creator A5053436378 @default.
- W3097777103 creator A5058429770 @default.
- W3097777103 creator A5062325991 @default.
- W3097777103 creator A5090842068 @default.
- W3097777103 date "2020-10-27" @default.
- W3097777103 modified "2023-10-16" @default.
- W3097777103 title "Attenuation correction using deep Learning and integrated UTE/multi-echo Dixon sequence: evaluation in amyloid and tau PET imaging" @default.
- W3097777103 cites W1882516042 @default.
- W3097777103 cites W1901129140 @default.
- W3097777103 cites W1972193165 @default.
- W3097777103 cites W1974594322 @default.
- W3097777103 cites W1984473052 @default.
- W3097777103 cites W1986863662 @default.
- W3097777103 cites W1991035308 @default.
- W3097777103 cites W2014842741 @default.
- W3097777103 cites W2015897296 @default.
- W3097777103 cites W2035397698 @default.
- W3097777103 cites W2043626403 @default.
- W3097777103 cites W2049130824 @default.
- W3097777103 cites W2052742260 @default.
- W3097777103 cites W2084851806 @default.
- W3097777103 cites W2129804985 @default.
- W3097777103 cites W2131001963 @default.
- W3097777103 cites W2137632876 @default.
- W3097777103 cites W2142082007 @default.
- W3097777103 cites W2167157872 @default.
- W3097777103 cites W2167720733 @default.
- W3097777103 cites W2173241347 @default.
- W3097777103 cites W2208340121 @default.
- W3097777103 cites W2215958284 @default.
- W3097777103 cites W2338054142 @default.
- W3097777103 cites W2429416455 @default.
- W3097777103 cites W2467603620 @default.
- W3097777103 cites W2528917098 @default.
- W3097777103 cites W2565897211 @default.
- W3097777103 cites W2754132686 @default.
- W3097777103 cites W2765429622 @default.
- W3097777103 cites W2780065026 @default.
- W3097777103 cites W2788611845 @default.
- W3097777103 cites W2801585709 @default.
- W3097777103 cites W2884362738 @default.
- W3097777103 cites W2888958117 @default.
- W3097777103 cites W2888970401 @default.
- W3097777103 cites W2907190488 @default.
- W3097777103 cites W2911573353 @default.
- W3097777103 cites W2949076424 @default.
- W3097777103 cites W2955015477 @default.
- W3097777103 cites W3038613716 @default.
- W3097777103 cites W3042780672 @default.
- W3097777103 cites W3101123465 @default.
- W3097777103 cites W4235092975 @default.
- W3097777103 cites W4241074797 @default.
- W3097777103 doi "https://doi.org/10.1007/s00259-020-05061-w" @default.
- W3097777103 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8411350" @default.
- W3097777103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33108475" @default.
- W3097777103 hasPublicationYear "2020" @default.
- W3097777103 type Work @default.
- W3097777103 sameAs 3097777103 @default.
- W3097777103 citedByCount "11" @default.
- W3097777103 countsByYear W30977771032021 @default.
- W3097777103 countsByYear W30977771032022 @default.
- W3097777103 countsByYear W30977771032023 @default.
- W3097777103 crossrefType "journal-article" @default.
- W3097777103 hasAuthorship W3097777103A5013691634 @default.
- W3097777103 hasAuthorship W3097777103A5034147027 @default.
- W3097777103 hasAuthorship W3097777103A5053436378 @default.
- W3097777103 hasAuthorship W3097777103A5058429770 @default.
- W3097777103 hasAuthorship W3097777103A5062325991 @default.
- W3097777103 hasAuthorship W3097777103A5090842068 @default.
- W3097777103 hasBestOaLocation W30977771032 @default.
- W3097777103 hasConcept C108583219 @default.
- W3097777103 hasConcept C123688308 @default.
- W3097777103 hasConcept C126838900 @default.
- W3097777103 hasConcept C143409427 @default.
- W3097777103 hasConcept C154945302 @default.
- W3097777103 hasConcept C199374082 @default.
- W3097777103 hasConcept C2775842073 @default.
- W3097777103 hasConcept C2989005 @default.
- W3097777103 hasConcept C41008148 @default.
- W3097777103 hasConcept C71924100 @default.
- W3097777103 hasConceptScore W3097777103C108583219 @default.
- W3097777103 hasConceptScore W3097777103C123688308 @default.
- W3097777103 hasConceptScore W3097777103C126838900 @default.
- W3097777103 hasConceptScore W3097777103C143409427 @default.
- W3097777103 hasConceptScore W3097777103C154945302 @default.
- W3097777103 hasConceptScore W3097777103C199374082 @default.
- W3097777103 hasConceptScore W3097777103C2775842073 @default.
- W3097777103 hasConceptScore W3097777103C2989005 @default.
- W3097777103 hasConceptScore W3097777103C41008148 @default.
- W3097777103 hasConceptScore W3097777103C71924100 @default.
- W3097777103 hasFunder F4320337337 @default.
- W3097777103 hasFunder F4320337363 @default.
- W3097777103 hasIssue "5" @default.
- W3097777103 hasLocation W30977771031 @default.